Stacking是用新的模型(次学习器)去学习怎么组合那些基学习器,它的思想源自于Stacked Generalization这篇论文.如果把Bagging看作是多个基分类器的线性组合,那么Stacking就是多个基分类器的非线性组合.Stacking可以很灵活,它可以将学习器一层一层地堆砌起来. 根据上图分析一下stacking具体步骤: 1)TrainingData进行5-fold分割,正好生成5个model,每个model预测训练数据的1/5部分,最后合起来正好是一个完整的训练集Predi…
一般提升模型效果从两个大的方面入手 数据层面:数据增强.特征工程等 模型层面:调参,模型融合 模型融合:通过融合多个不同的模型,可能提升机器学习的性能.这一方法在各种机器学习比赛中广泛应用, 也是在比赛的攻坚时刻冲刺Top的关键.而融合模型往往又可以从模型结果,模型自身,样本集等不同的角度进行融合. 模型融合是后期一个重要的环节,大体来说有如下的类型方式: 加权融合(投票.平均) 硬投票 软投票 boosting/bagging(集成学习) stacking/blending 本文主要介绍sta…
1. 偏差与方差 - 机器学习算法泛化性能分析 在一个项目中,我们通过设计和训练得到了一个model,该model的泛化可能很好,也可能不尽如人意,其背后的决定因素是什么呢?或者说我们可以从哪些方面去改进从而使下次得到的model更加令人满意呢? ”偏差-方差分解(bias-variance decomposition)“是解释学习算法泛化能力性能的一种重要工具.偏差-方差分解试图对学习算法的期望泛化错误率进行拆解. 假设测试样本为x,yd 为 x 在数据集中的标记(注意,有可能出现噪声使得 y…
作者:吴晓军 原文:https://zhuanlan.zhihu.com/p/27424282 模型验证(Validation) 在Test Data的标签未知的情况下,我们需要自己构造测试数据来验证模型的泛化能力,因此把Train Data分割成Train Set和Valid Set两部分,Train Set用于训练,Valid Set用于验证. 简单分割 将Train Data按一定方法分成两份,比如随机取其中70%的数据作为Train Set,剩下30%作为Valid Set,每次都固定地…
总结:不平衡数据的分类,(1)数据层面:使用过采样是主流,过采样通常使用smote,或者少数使用数据复制.过采样后模型选择RF.xgboost.神经网络能够取得非常不错的效果.(2)模型层面:使用模型集成,样本不做处理,将各个模型进行特征选择.参数调优后进行集成,通常也能够取得不错的结果.(3)其他方法:偶尔可以使用异常检测技术,主要有IsolationForest,OneClassSVM,LocalOutlierFactor,KMeans,其中IsolationForest效果最好.但是不及前…
python+sklearn+kaggle机器学习 系列教程 0.kaggle 1. 初级线性回归模型机器学习过程 a. 提取数据 b.数据预处理 c.训练模型 d.根据数据预测 e.验证 今天是1024欸,发个贴拿个勋章 至于为什么1024这个数字很重要,因为1024是2的10次方 系列教程 补了一个系列关于这个的实例教程 机器学习参考篇: python+sklearn+kaggle机器学习 用python+sklearn(机器学习)实现天气预报 准备 用python+sklearn(机器学习…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/34 本文地址:http://www.showmeai.tech/article-detail/195 声明:版权所有,转载请联系平台与作者并注明出处 引言 之前ShowMeAI对强大的boosting模型工具XGBoost做了介绍(详见ShowMeAI文章图解机器学习 | XGBoost模型详解).本篇我们来学习一下GBDT模型(详见ShowMeAI文章 图解机器学习 | GBDT模…
本文转自:http://mp.weixin.qq.com/s/Xe3g2OSkE3BpIC2wdt5J-A 谷歌大规模机器学习:模型训练.特征工程和算法选择 (32PPT下载) 2017-01-26 新智元 1新智元编译   来源:ThingsExpo.Medium 作者:Natalia Ponomareva.Gokula Krishnan Santhanam 整理&编译:刘小芹.李静怡.胡祥杰 新智元日前宣布,获6家顶级机构总额达数千万元的PreA轮融资,蓝驰创投领投,红杉资本中国基金.高瓴智…
什么是CMMI CMMI全称是Capability Maturity Model Integration, 即能力成熟度模型集成,是由美国国防部(Office of the Secretary of Defense)与卡内基-梅隆大学(Carnegie Mellon University)和美国国防工业协会(National Defense Industrial Association)共同开发的一个过程改进方法(process improvement approach),它向组织提供用于有效的…
关于CMMI的过程域,请参考 CMMI能力成熟度模型集成的过程区域 1.CMMI/SPCA概述 CMM是“能力成熟度模型(Capability Maturity Model)”的英文简写,该模型由美国卡内基-梅隆大学的软件工程研究所(简称SEI)受美国国防部委托,于1991年研究制定,最初的主要目的是为了评价美国国防部的软件合同承包组织的能力,后因为在软件企业应用CMM实施过程改进取得较大的成功,便在全世界范围内广泛使用. CMMI是SEI于2000年发布的CMM的新版本.CMMI发展到现在,共…