在前面的文章中,已经介绍了从有约束条件下的凸优化角度思考神经网络训练过程中的L2正则化,本次我们从最大后验概率点估计(MAP,maximum a posteriori point estimate)的角度来理解神经网络中十分重要的weight decay正则化方法. 前面的文章中讲到了梯度下降法可以从最大似然概率估计(ML)的角度来理解,最大似然是一种典型的频率统计方法,还有一种非常不同的贝叶斯统计方法(具体的区别请参考花书).由于贝叶斯统计方法很多时候是复杂不易于处理的,因此我们更想要一种类似…
从有约束条件下的凸优化角度思考神经网络训练过程中的L2正则化 神经网络在训练过程中,为应对过拟合问题,可以采用正则化方法(regularization),一种常用的正则化方法是L2正则化. 神经网络中L2正则化的定义形式如下: \[ J(W,b)=\frac{1}{m}\sum_{i=1}^{m}l(y^{(i)},\hat y^{(i)})+\frac{\lambda}{2m}\sum_{i=1}^{m}||W^{(i)}||_F^2\] 其中,J(W,b)为正则化下的cost functio…
最近有人问起在YOLOv2训练过程中输出在终端的不同的参数分别代表什么含义,如何去理解这些参数?本篇文章中我将尝试着去回答这个有趣的问题. 刚好现在我正在训练一个YOLOv2模型,拿这个真实的例子来讨论再合适不过了,下边是我训练中使用的 .cfg 文件(你可以在cfg文件夹下找到它): 以下是训练过程中终端输出的一个截图: 以上截图显示了所有训练图片的一个批次(batch),批次大小的划分根据我们在 .cfg 文件中设置的subdivisions参数.在我使用的 .cfg 文件中 batch =…
原英文地址: https://timebutt.github.io/static/understanding-yolov2-training-output/ 最近有人问起在YOLOv2训练过程中输出在终端的不同的参数分别代表什么含义,如何去理解这些参数?本篇文章中我将尝试着去回答这个有趣的问题. 刚好现在我正在训练一个YOLOv2模型,拿这个真实的例子来讨论再合适不过了,下边是我训练中使用的 .cfg 文件(你可以在cfg文件夹下找到它): 以下是训练过程中终端输出的一个截图: 以上截图显示了所…
写在前面   各式资料中关于BP神经网络的讲解已经足够全面详尽,故不在此过多赘述.本文重点在于由一个"最简单"的神经网络练习推导其训练过程,和大家一起在练习中一起更好理解神经网络训练过程. 一.BP神经网络 1.1 简介   BP网络(Back-Propagation Network) 是1986年被提出的,是一种按误差逆向传播算法训练的   多层前馈网络,是目前应用最广泛的神经网络模型之一,用于函数逼近.模型识别分类.数据压缩和时间序列预测等.   一个典型的BP网络应该包括三层:输…
一:适用范围: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层 二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算.但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了 三:函数介绍: tf.nn.drop(x,  keep_prob, noise_shape=None, seed=Non…
罪魁祸首是训练过程中给模型传值时的如下语句:…
学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛. 本文主要介绍深度学习训练过程中的6种学习率衰减策略以及相应的Pytorch实现. 1. StepLR 按固定的训练epoch数进行学习率衰减. 举例说明: # lr = 0.05 if epoch < 30 # lr = 0.005 if 30 <= epoch < 60 # lr = 0.0005 if 60 <= epoch < 90 在上述例子中,每30个epochs衰减十倍学习率. 计算公式…
// Iterator<Map.Entry<String,Long>> entries = Map.entrySet().iterator();                      while(entries.hasNext()){                          Map.Entry<String,Long> entry = entries.next();                          System.out.println(&…
下载CUDA8.0,安装 下载cuDNN v5.1安装.放置环境变量等. 其他版本就不装了.不用找其他版本的关系. 使用tensorflow-gpu1.0版本. 使用keras2.0版本. 有提示的. 有时候可能需要分配使用空间自动增长: config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config) 英伟达 MX150.华硕FL8000…