作者: 梦里茶 如果觉得我的工作对你有帮助,就点个star吧 关于 这是百度举办的一个关于狗的细粒度分类比赛,比赛链接: http://js.baidu.com/ 框架 Keras Tensorflow后端 硬件 Geforce GTX 1060 6G Intel® Core™ i7-6700 CPU Memory 8G 模型 Xception提取深度特征 Xception结构图 受这篇Person Re-id论文的启发,在多分类基础上增加一个样本是否相同判断的二分类loss,增加类间距离,减小…
[导读]CVPR 2019细粒度图像分类workshop的挑战赛公布了最终结果:中国团队DeepBlueAI获得冠军.本文带来冠军团队解决方案的技术分享. 近日,在Kaggle上举办的CVPR 2019 Cassava Disease Classification挑战赛公布了最终结果,国内团队 DeepBlueAI 获得冠军. 国际计算机视觉与模式识别会议(CVPR)是IEEE一年一度的学术性会议,CVPR是世界顶级的计算机视觉会议之一,会议的主要内容是计算机视觉与模式识别技术.CVPR 201…
深度学习笔记 目标函数的总结与整理   目标函数,或称损失函数,是网络中的性能函数,也是编译一个模型必须的两个参数之一.由于损失函数种类众多,下面以keras官网手册的为例. 在官方keras.io里面,有如下资料: mean_squared_error或mse mean_absolute_error或mae mean_absolute_percentage_error或mape mean_squared_logarithmic_error或msle squared_hinge hinge bi…
用keras搭好模型架构之后的下一步,就是执行编译操作.在编译时,经常需要指定三个参数 loss optimizer metrics 这三个参数有两类选择: 使用字符串 使用标识符,如keras.losses,keras.optimizers,metrics包下面的函数 例如: sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', opt…
原文:https://blog.csdn.net/zzulp/article/details/76358694 import keras from keras.datasets import cifar10 from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D num…
细粒度图像识别Object-Part Attention Driven Discriminative Localization for Fine-grained Image Classification(OPADDL) 论文笔记 原文:"Object-Part Attention Model for Fine-grained Image Classification", IEEE Transactions on Image Processing (TIP), Vol. 27, No.…
1.Keras输出的loss,val这些值如何保存到文本中去: Keras中的fit函数会返回一个History对象,它的History.history属性会把之前的那些值全保存在里面,如果有验证集的话,也包含了验证集的这些指标变化情况,具体写法: hist=model.fit(train_set_x,train_set_y,batch_size=,shuffle=True,nb_epoch=nb_epoch,validation_split=0.1) with open('log_sgd_bi…
1.一般的模型构造.训练.测试流程 # 模型构造 inputs = keras.Input(shape=(784,), name='mnist_input') h1 = layers.Dense(64, activation='relu')(inputs) h1 = layers.Dense(64, activation='relu')(h1) outputs = layers.Dense(10, activation='softmax')(h1) model = keras.Model(inp…
我一直强调做深度学习,最好是结合实际的数据上手,参照理论,对知识的掌握才会更加全面.先了解原理,然后找一匹数据来验证,这样会不断加深对理论的理解. 欢迎留言与交流! 数据来源: cifar10  (其他相关的图片的开源数据集下载见 : https://yq.aliyun.com/articles/576274)  文末有全部代码 PS:神经网络系列多用于图像,文字的生成,解析,识别.因此需要掌握充足的开源数据集来验证所学的算法理论. 首先下载好数据后解压.数据的样子如下: data_batch1…
数据的读取 import tensorflow as tf from tensorflow.python import keras from tensorflow.python.keras.preprocessing.image import ImageDataGenerator class TransferModel(object): def __init__(self): #标准化和数据增强 self.train_generator = ImageDataGenerator(rescale=…