OpenCv的CV2一些函数总结】的更多相关文章

(一)简单阈值 简单阈值当然是最简单,选取一个全局阈值,然后就把整幅图像分成了非黑即白的二值图像了.函数为cv2.threshold() 这个函数有四个参数,第一个原图像,第二个进行分类的阈值,第三个是高于(低于)阈值时赋予的新值,第四个是一个方法选择参数,常用的有: • cv2.THRESH_BINARY(黑白二值) • cv2.THRESH_BINARY_INV(黑白二值反转) • cv2.THRESH_TRUNC (得到的图像为多像素值) • cv2.THRESH_TOZERO • cv2…
OpenCV 中的绘图函数 画线 首先要为画的线创造出环境,就要生成一个空的黑底图像 img=np.zeros((512,512,3), np.uint8) 这是黑色的底,我们的画布,我把窗口名叫做img np.zeros()有两个参数,一个是创建的图片矩阵大小,另一个是数据类型 512,512是像素(第一个512像素高,第二个是512像素宽),3指BGR三种颜色 uint8是用0-255表示所有颜色. cv2.line(img,(0,0),(511,511),(255,0,0),5) 这个函数…
一.读入图像 使用函数cv2.imread(filepath,flags)读入一副图片 filepath:要读入图片的完整路径 flags:读入图片的标志  cv2.IMREAD_COLOR:默认参数,读入一副彩色图片,忽略alpha通道 cv2.IMREAD_GRAYSCALE:读入灰度图片 cv2.IMREAD_UNCHANGED:顾名思义,读入完整图片,包括alpha通道 import cv2 img = cv2.imread('1.jpg',cv2.IMREAD_GRAYSCALE) 二…
可以根据像素的行和列的坐标获取他的像素值.对 BGR 图像而言,返回值为 B,G,R 例如获取蓝色的像素值: img=cv2.imread('messi5.jpg')px=img[100,100]blue=img[100,100,0]  获取图像属性 图像的属性包括:行,列,通道,图像数据类型,像素数目等img.shape 可以获取图像的形状.他的返回值是一个包含行数,列数,通道数的元组. import cv2 import numpy as np img=cv2.imread('messi5.…
OpenCV混合高斯模型函数注释说明 一.cvaux.h #define CV_BGFG_MOG_MAX_NGAUSSIANS 500 //高斯背景检测算法的默认参数设置 #define CV_BGFG_MOG_BACKGROUND_THRESHOLD 0.7 //高斯分布权重之和阈值 #define CV_BGFG_MOG_STD_THRESHOLD 2.5 //λ=2.5(99%) #define CV_BGFG_MOG_WINDOW_SIZE 200 //学习率α=1/win_size #…
前言 简单的人脸检测程序可以直接基于opencv的函数库进行实现,本文介绍一下detectMultiScale函数. 函数简介 opencv2人脸检测使用的是detectMultiScale函数,可以检测出图片中的所有人脸,并将vector类型保存各个人脸的位置和大小,用矩形Rect类表示,该函数由分类器的对象进行调用. Haar特征分类器 Haar特征分类器就是一个XML文件,是opencv官方训练好的检测器,可以直接调用,存放在opencv的安装目录下. .\opencv\sources\d…
http://www.cnblogs.com/tornadomeet/archive/2012/12/26/2834336.html 前言 OpenCV中保存图片的函数在c++版本中变成了imwrite(),这应该是向matlab中图像处理的的一些函数风格靠近吧.保存图片这个功能还是很重要的,比如说在写科研论文的时候需要把一些中间图片给贴出来,这样就可以在程序中间利用该函数保存图片了.甚至还可以将这些保存的图片供后续的matlab处理.本文就简单介绍下OpenCV中imwrite()函数的用法.…
cv2.threshold()函数的作用是将一幅灰度图二值化,基本用法如下: #ret:暂时就认为是设定的thresh阈值,mask:二值化的图像 ret,mask = cv2.threshold(img2gray,175,255,cv2.THRESH_BINARY) plt.imshow(mask,cmap='gray') 上面代码的作用是,将灰度图img2gray中灰度值小于175的点置0,灰度值大于175的点置255. 具体用法如下: threshold(src, thresh, maxv…
本次目标是将一副图像从rgb颜色空间转换到hsv颜色空间,颜色去除白色背景部分 具体就调用了cv2的两个函数,一个是rgb转hsv的函数 具体用法 hsv = cv2.cvtColor(rgb_image, cv2.COLOR_BGR2HSV)然后利用cv2.inRange函数设阈值,去除背景部分 mask = cv2.inRange(hsv, lower_red, upper_red) #lower20===>0,upper200==>0,函数很简单,参数有三个第一个参数:hsv指的是原图…