如果某个broker挂了,leader副本在该broker上的分区就要重新进行leader选举.来简要描述下leader选举的过程 1.4.1 KafkaController会监听ZooKeeper的/brokers/ids节点路径,一旦发现有broker挂了,执行下面的逻辑.这里暂时先不考虑KafkaController所在broker挂了的情况,KafkaController挂了,各个broker会重新leader选举出新的KafkaController 1.4.2 leader副本在该br…
生产者产生消息发送给RocketMQ RocketMQ接收到了消息之后,必然需要存到磁盘中,否则断电或宕机之后会造成数据的丢失 消费者从RocketMQ中获取消息消费,消费成功之后,整个流程结束 1.场景1中生产者将消息发送给Rocket MQ的时候,如果出现了网络抖动或者通信异常等问题,消息就有可能会丢失 2.场景2中消息需要持久化到磁盘中,这时会有两种情况导致消息丢失 RocketMQ为了减少磁盘的IO,会先将消息写入到os cache中,而不是直接写入到磁盘中,消费者从os cache中获…
关于 Kafka 消息丢失.重复消费和顺序消费的问题 消息丢失,消息重复消费,消息顺序消费等问题是我们使用 MQ 时不得不考虑的一个问题,下面我结合实际的业务来和你分享一下解决方案. 消息丢失问题 比如我们使用 Kakfa 时,以下场景都会发生消息丢失: producer -> broker (生产者生产消息) broker -> broker (集群环境,broker 同步给其他 broker) broker -> consumer (消费者消费消息) 解决方案也很简单,设置 acks…
原文链接(作者一个人):https://juejin.im/post/5d468591f265da03b810427e 工作中经常用到消息中间件来解决系统间的解耦问题或者高并发消峰问题,但是消息的可靠性如何保证一直是个很大的问题,什么情况下消息就不见了?如何防止消息丢失?下面通过这篇文章,我们就聊聊RabbitMQ 消息可靠性如何解决的? 本文分三部分说明 RabbitMQ 消息丢失场景有哪些? 如何避免消息丢失? 如何设计部署消息中间件保证消息可靠性? RabbitMQ 消息丢失场景有哪些?…
Kafka到底会不会丢数据(data loss)? 通常不会,但有些情况下的确有可能会发生.下面的参数配置及Best practice列表可以较好地保证数据的持久性(当然是trade-off,牺牲了吞吐量).笔者会在该列表之后对列表中的每一项进行讨论,有兴趣的同学可以看下后面的分析. block.on.buffer.full = true acks = all retries = MAX_VALUE max.in.flight.requests.per.connection = 1 使用Kafk…
kafka leader选举 一条消息只有被ISR中的所有follower都从leader复制过去才会被认为已提交.这样就避免了部分数据被写进了leader,还没来得及被任何follower复制就宕机了,而造成数据丢失.而对于producer而言,它可以选择是否等待消息commit,这可以通过request.required.acks来设置.这种机制确保了只要ISR中有一个或者以上的follower,一条被commit的消息就不会丢失. 有一个很重要的问题是当leader宕机了,怎样在follo…
转载自 huxihx,原文链接 Kafka无消息丢失配置 目录 一.Producer端二.Consumer端 Kafka到底会不会丢数据(data loss)? 通常不会,但有些情况下的确有可能会发生.下面的参数配置及Best practice列表可以较好地保证数据的持久性(当然是trade-off,牺牲了吞吐量).笔者会在该列表之后对列表中的每一项进行讨论,有兴趣的同学可以看下后面的分析. block.on.buffer.full = true acks = all retries = MAX…
在很多的流处理框架的介绍中,都会说kafka是一个可靠的数据源,并且推荐使用Kafka当作数据源来进行使用.这是因为与其他消息引擎系统相比,kafka提供了可靠的数据保存及备份机制.并且通过消费者位移这一概念,可以让消费者在因某些原因宕机而重启后,可以轻易得回到宕机前的位置. 但其实kafka的可靠性也只能说是相对的,在整条数据链条中,总有可以让数据出现丢失的情况,今天就来讨论如何避免kafka数据丢失,以及实现精确一致处理的语义. kafka无消息丢失处理 在讨论如何实现kafka无消息丢失的…
消息队列常见问题处理 分布式事务 什么是分布式事务 常见的分布式事务解决方案 基于 MQ 实现的分布式事务 本地消息表-最终一致性 MQ事务-最终一致性 RocketMQ中如何处理事务 Kafka中如何处理事务 RabbitMQ中的事务 消息防丢失 生产阶段防止消息丢失 RabbitMQ 中的防丢失措施 Kafka 中的防丢失措施 RocketMQ 中的防丢失措施 存储阶段 RabbitMQ 中的防丢失措施 Kafka 中的防丢失措施 RocketMQ 中的防丢失措施 消费阶段 消息重复发送 参…
1.kafka在高并发的情况下,如何避免消息丢失和消息重复? 消息丢失解决方案: 首先对kafka进行限速, 其次启用重试机制,重试间隔时间设置长一些,最后Kafka设置acks=all,即需要相应的所有处于ISR的分区都确认收到该消息后,才算发送成功 消息重复解决方案: 消息可以使用唯一id标识 生产者(ack=all 代表至少成功发送一次) 消费者 (offset手动提交,业务逻辑成功处理后,提交offset) 落表(主键或者唯一索引的方式,避免重复数据) 业务逻辑处理(选择唯一主键存储到R…