C# Levenshtein计算字符串的相似度】的更多相关文章

static void Main(string[] args) { Levenshtein(@"今天天气不错", @"今天的天气不错啊"); Console.Read(); } /// <summary> /// 字符串相似度计算 /// </summary> /// <param name="str1"></param> /// <param name="str2">…
Levenshtein Distance莱文斯坦距离定义: 数学上,两个字符串a.b之间的莱文斯坦距离表示为levab(|a|, |b|). levab(i, j) = max(i, j)  如果min(i, j) = 0; =  min(levab(i - 1, j) + 1, levab(i, j-1) + 1, levab(i - 1, j - 1) + 1)     (ai != bj) 否则其中ai != bj 是指示函数,当ai != bj 时为1, 否则为0. 核心公式就是下面:…
题目描述: 对于不同的字符串,我们希望能有办法判断相似程度,我们定义了一套操作方法来把两个不相同的字符串变得相同,具体的操作方法如下: 1 修改一个字符,如把“a”替换为“b”. 2 增加一个字符,如把“abdd”变为“aebdd”. 3 删除一个字符,如把“travelling”变为“traveling”. 比如,对于“abcdefg”和“abcdef”两个字符串来说,我们认为可以通过增加和减少一个“g”的方式来达到目的.上面的两种方案,都只需要一次操作.把这个操作所需要的次数定义为两个字符串…
def get_ord_list(str): return [ord(i) for i in str] def calcu_approx(str1,str2): def dot(A,B): return (sum(a*b for a,b in zip(A,B))) def cosine_similarity(a,b): return dot(a,b) / ( (dot(a,a) **.5) * (dot(b,b) ** .5) ) ord_list1 = get_ord_list(str1) o…
//LD最短编辑路径算法 public static int LevenshteinDistance(string source, string target) { int cell = source.Length; int row = target.Length; if (cell == 0) { return row; } if (row == 0) { return cell; } int[, ] matrix = new int[row + 1, cell + 1]; for (var…
利用编辑距离(Edit Distance)计算两个字符串的相似度 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符.一般来说,编辑距离越小,两个串的相似度越大. 例如将kitten一字转成sitting: sitten (k→s)        sittin (e→i)        sitting (→g) 俄罗斯科学家Vladimir Le…
similar_text — 计算两个字符串的相似度 int similar_text ( string $first , string $second [, float &$percent ] ) $first 必需.规定要比较的第一个字符串. $second 必需.规定要比较的第二个字符串. $percent 可选.规定供存储百分比相似度的变量名. 两个字符串的相似程度计算依据 Oliver [1993] 的描述进行.注意该实现没有使用 Oliver 虚拟码中的堆栈,但是却进行了递归调用,这…
我们在做数据系统的时候,经常会用到模糊搜索,但是,数据库提供的模糊搜索并不具备按照相关度进行排序的功能. 现在提供一个比较两个字符串相似度的方法. 通过计算出两个字符串的相似度,就可以通过Linq在内存中对数据进行排序和筛选,选出和目标字符串最相似的一个结果. 本次所用到的相似度计算公式是 相似度=Kq*q/(Kq*q+Kr*r+Ks*s) (Kq > , Kr>=,Ka>=) 其中,q是字符串1和字符串2中都存在的单词的总数,s是字符串1中存在,字符串2中不存在的单词总数,r是字符串2…
余弦相似度计算字符串相似率 功能需求:最近在做通过爬虫技术去爬取各大相关网站的新闻,储存到公司数据中.这里面就有一个技术点,就是如何保证你已爬取的新闻,再有相似的新闻 或者一样的新闻,那就不存储到数据库中.(因为有网站会去引用其它网站新闻,或者把其它网站新闻拿过来稍微改下内容就发布到自己网站中). 解析方案:最终就是采用余弦相似度算法,来计算两个新闻正文的相似度.现在自己写一篇博客总结下. 一.理论知识 先推荐一篇博客,对于余弦相似度算法的理论讲的比较清晰,我们也是按照这个方式来计算相似度的.网…
使用Levenshtein计算相似度距离,装下模块,调用下函数就好. 拿idf还得自己去算权重,而且不一定准确度高,一般做idf还得做词性归一化,把动词形容词什么全部转成名词,很麻烦. Levenshtein.distance(str1,str2) 计算编辑距离(也称Levenshtein距离).是描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括插入.删除.替换.如 例如将eeba转变成abac: ① eba(删除第一个e) ② aba(将剩下的e替换成a) ③ abac(在末尾插…