1.mapper #!/usr/bin/env python import sys for line in sys.stdin: line = line.strip() words = line.split() for word in words: print "%s\t%s" % (word, 1) 2.reducer(reduce执行之前不一定整体有序,在归并的过程中一直在执行reduce代码) #!/usr/bin/env python from operator import…
前言 前面一篇博文写的是Combiner优化MapReduce执行,也就是使用Combiner在map端执行减少reduce端的计算量. 一.作业的默认配置 MapReduce程序的默认配置 1)概述 在我们的MapReduce程序中有一些默认的配置.所以说当我们程序如果要使用这些默认配置时,可以不用写. 我们的一个MapReduce程序一定会有Mapper和Reducer,但是我们程序中不写的话,它也有默认的Mapper和Reducer. 当我们使用默认的Mapper和Reducer的时候,m…
多个Mapper和Reducer的Job @(Hadoop) 对于复杂的mr任务来说,只有一个map和reduce往往是不能够满足任务需求的,有可能是需要n个map之后进行reduce,reduce之后又要进行m个map. 在hadoop的mr编程中可以使用ChainMapper和ChainReducer来实现链式的Map-Reduce任务. ChainMapper 以下为官方API文档翻译: ChainMapper类允许在单一的Map任务中使用多个Mapper来执行任务,这些Mapper将会以…
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博主为石山园,博客地址为 http://www.cnblogs.com/shishanyuan  .该系列课程是应邀实验楼整理编写的,这里需要赞一下实验楼提供了学习的新方式,可以边看博客边上机实验,课程地址为 https://www.shiyanlou.com/courses/237 [注]该系列所使用到安装包.测试数据和代码均可在百度网盘下载,具体地址为 http://pan.baidu.c…
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博主为石山园,博客地址为 http://www.cnblogs.com/shishanyuan  .该系列课程是应邀实验楼整理编写的,这里需要赞一下实验楼提供了学习的新方式,可以边看博客边上机实验,课程地址为 https://www.shiyanlou.com/courses/237 [注]该系列所使用到安装包.测试数据和代码均可在百度网盘下载,具体地址为 http://pan.baidu.c…
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博主为石山园,博客地址为 http://www.cnblogs.com/shishanyuan  .该系列课程是应邀实验楼整理编写的,这里需要赞一下实验楼提供了学习的新方式,可以边看博客边上机实验,课程地址为 https://www.shiyanlou.com/courses/237 [注]该系列所使用到安装包.测试数据和代码均可在百度网盘下载,具体地址为 http://pan.baidu.c…
首先编写WordCount.java源文件,分别通过map和reduce方法统计文本中每个单词出现的次数,然后按照字母的顺序排列输出, Map过程首先是多个map并行提取多个句子里面的单词然后分别列出来每个单词,出现次数为1,全部列举出来 Reduce过程首先将相同key的数据进行查找分组然后合并,比如对于key为Hello的数据分组为:<Hello, 1>.<Hello,1>.<Hello,1>,合并之后就是<Hello,1+1+1>,分组也可以理解为re…
转:http://blog.csdn.net/jediael_lu/article/details/38705371 以下程序在hadoop1.2.1上测试成功. 本例先将源代码呈现,然后详细说明执行步骤,最后对源代码及执行过程进行分析. 一.源代码 package org.jediael.hadoopdemo.wordcount; import java.io.IOException; import java.util.StringTokenizer; import org.apache.ha…
这段时间需要学习Hadoop了,以前一直听说Hadoop,但是从来没有研究过,这几天粗略看完了<Hadoop实战>这本书,对Hadoop编程有了大致的了解.接下来就是多看多写了.以Hadoop自带的例子WordCount程序开始,来记录我的Hadoop学习过程. Hadoop自带例子WordCount.java /** * Licensed under the Apache License, Version 2.0 (the "License"); * you may no…
原文链接:http://www.cnblogs.com/xia520pi/archive/2012/06/04/2534533.html 1.数据去重  "数据去重"主要是为了掌握和利用并行化思想来对数据进行有意义的筛选.统计大数据集上的数据种类个数.从网站日志中计算访问地等这些看似庞杂的任务都会涉及数据去重.下面就进入这个实例的MapReduce程序设计. 1.1 实例描述 对数据文件中的数据进行去重.数据文件中的每行都是一个数据. 样例输入如下所示: 1)file1: 2012-3…
Mapper的处理过程: 1.1. InputFormat 产生 InputSplit,并且调用RecordReader将这些逻辑单元(InputSplit)转化为map task的输入.其中InputSplit是map task处理的最小输入单元的逻辑表示. 1.2. 在客户端代码中调用Job类来设置参数,并执行在hadoop集群的上的MapReduce程序. 1.3. Mapper类在Job中被实例化,并且通过MapContext对象来传递参数设置.可以调用Job.getConfigurat…
1.环境准备 下载:http://mirror.bit.edu.cn/apache/hadoop/common/hadoop-2.7.2/hadoop-2.7.2.tar.gz 解压:解压后,修改etc/hadoop/hadoop-env.sh 中JAVA_HOME, 我的java_home(可以通过cat /etc/profile)是/user/java/latest 2.Hadoop Single_Node Cluster 参考官方文档:http://hadoop.apache.org/do…
mapreduce是一种计算模型,是google的一篇论文向全世界介绍了MapReduce.MapReduce其实可以可以用多种语言编写Map或Reduce程序,因为hadoop是java写的,所以通常情况下我们都是选择java编程语言.其实mr的编写格式或者说语法要求很简单,其实复杂的是我们要学会利用这个模型,将问题分解计算. MapReduce计算模型 MapReduce Job 每个mr任务都被初始化成一个job,后续我们在编写自己的第一个mr任务的时候也会感受到.每个job分为Map阶段…
Hadoop 2:Mapper和Reduce Understanding and Practicing Hadoop Mapper and Reduce 1 Mapper过程 Hadoop将输入数据划分为等长的小数据块(默认为64MB)的过程叫做分片,并为每个分片构建一个Mappper任务,并由Mapper任务执行用户自定义的函数处理分片中的数据,mapper就是将这些数据中包含我们感兴趣或要处理的数据构成一个以键值存储的数据集,比如按年月分析NCDC每月最高温度信息(关于NCDC温度数据格式和…
1. Mapper类 首先 Mapper类有四个方法: (1) protected void setup(Context context) (2) Protected void map(KEYIN key,VALUEIN value,Context context) (3) protected void cleanup(Context context) (4) public void run(Context context) setup()方法一般用来加载一些初始化的工作,像全局文件\建立数据库…
1 . 旧版 API 的 Mapper/Reducer 解析 Mapper/Reducer 中封装了应用程序的数据处理逻辑.为了简化接口,MapReduce 要求所有存储在底层分布式文件系统上的数据均要解释成 key/value 的形式,并交给Mapper/Reducer 中的 map/reduce 函数处理,产生另外一些 key/value.Mapper 与 Reducer 的类体系非常类似,我们以 Mapper 为例进行讲解.Mapper 的类图如图所示,包括初始化.Map操作和清理三部分.…
1.WordCount Job类: package com.simope.mr.wcFor; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import or…
模板类编写好后写MapReduce程序,的模板类编写好以后只需要改参数就行了,代码如下: package org.dragon.hadoop.mr.module; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.h…
以下程序在hadoop1.2.1上测试成功. 本例先将源代码呈现,然后详细说明执行步骤,最后对源代码及执行过程进行分析. 一.源代码 package org.jediael.hadoopdemo.wordcount; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path;…
转载自:http://blog.fens.me/hadoop-mapreduce-log-kpi/ 今天学习了这一篇博客,写得十分好,照着这篇博客敲了一遍. 发现几个问题, 一是这篇博客中采用的hadoop版本过低,如果在hadoop2.x上面跑的话,可能会出现结果文件没有写入任何数据,为了解决这个问题,我试着去参照官网http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core…
http://hadoop.apache.org/docs/r1.2.1/api/index.html 适当的利用 null 在map中可以实现对文件的简单处理,如排序,和分集合输出等. 需要关心的内容 一个节点面对的是一个Map任务,一个Map任务面对的是一个split文件,一个map方法面对的是一个split文件生成的键值对. mapper类中map方法的输入是InputFormat的ReadeRecord类读取到的键值对 学习一周之后问题总结: 1.实验时使用的文件过小,大量小文件问题,需…
紧接着<Hadoop入门学习笔记---part3>中的继续了解如何用java在程序中操作HDFS. 众所周知,对文件的操作无非是创建,查看,下载,删除.下面我们就开始应用java程序进行操作,前提是按照<Hadoop入门学习笔记---part2>中的已经在虚拟机中搭建好了Hadoop伪分布环境:并且确定现在linux操作系统中hadoop的几个进程已经完全启动了. 好了,废话不多说!实际的例子走起. 在myeclipse中新建一个java工程: 在项目工程中新建一个lib包用于存放…
2015年元旦,好好学习,天天向上.良好的开端是成功的一半,任何学习都不能中断,只有坚持才会出结果.继续学习Hadoop.冰冻三尺,非一日之寒! 经过Hadoop的伪分布集群环境的搭建,基本对Hadoop有了一个基础的了解.但是还是有一些理论性的东西需要重复理解,这样才能彻底的记住它们.个人认为重复是记忆之母.精简一下: NameNode:管理集群,并且记录DataNode文件信息: SecondaryNameNode:可以做冷备份,对一定范围内的数据作快照性备份: DataNode:存储数据:…
在<Hadoop入门学习笔记---part1>中感觉自己虽然总结的比较详细,但是始终感觉有点凌乱.不够系统化,不够简洁.经过自己的推敲和总结,现在在此处概括性的总结一下,认为在准备搭建hadoop环境时,需要在linux机器上做一些设置,在搭建Hadoop集群环境前,需要在本地机器上做以下设置: 修改ip地址: 关闭防火墙: Hostname的修改: Ssh自动登陆的设置(也即:免密码登录): **关于以上操作的详细命令可以查看上一篇博客<Hadoop入门学习笔记---part1>…
随着毕业设计的进行,大学四年正式进入尾声.任你玩四年的大学的最后一次作业最后在激烈的选题中尘埃落定.无论选择了怎样的选题,无论最后的结果是怎样的,对于大学里面的这最后一份作业,也希望自己能够尽心尽力,好好做.正是因为选题和hadoop有关,现在正式开始学习hadoop.将笔记整理于此,希望与志同道合的朋友共同交流. 作者:itRed 邮箱:it_red@sina.com 个人博客链接:http://www.cnblogs.com/itred 好了,废话不多说.进入正题!开始hadoop的学习.…
初识hadoop入门介绍 Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴定Hadoop不适用我们的项目,但是我会继续研究下去,技多不压身. <Hadoop基础教程>是我读的第一本Hadoop书籍,当然在线只能试读第一章,不过对Hadoop历史.核心技术和应用场景有了初步了解. ·        Hadoop历史 雏形开始于2002年的Apache的Nutch,Nutch是一个开源Java 实现的搜索引擎.它提供了我们运行自己的搜索引擎所需的全…
大数据:Hadoop入门 一:什么是大数据 什么是大数据: (1.)大数据是指在一定时间内无法用常规软件对其内容进行抓取,管理和处理的数据集合,简而言之就是数据量非常大,大到无法用常规工具进行处理,如关系型数据库,数据仓库等.这里“大”是一个什么量级呢?如在阿里巴巴每天处理数据达到20PB(即20971520GB). 2.大数据的特点: (1.)体量巨大.按目前的发展趋势来看,大数据的体量已经到达PB级甚至EB级. (2.)大数据的数据类型多样,以非结构化数据为主,如网络杂志,音频,视屏,图片,…
目录: 1.hadoop入门须知 2.hadoop环境搭建 3.hadoop mapreduce之WordCount例子 4.idea本地调试hadoop程序 5.hadoop 从mysql中读取数据写到hdfs 1)基本介绍 hadoop是什么?Hadoop是一个开源的框架,可编写和运行分不是应用处理大规模数据,是专为离线和大规模数据分析而设计的,并不适合那种对几个记录随机读写的在线事务处理模式.Hadoop=HDFS(文件系统,数据存储技术相关)+ Mapreduce(数据处理),Hadoo…
1.进入根目录,建两个文件夹,分别为src和dist 1).src文件夹:用来存放我们编写的javascript代码,可以简单的理解为用JavaScript编写的模块. 2).dist文件夹:用来存放供浏览器读取的文件,这个是webpack打包成的文件. 2.在dist下建立一个index.html文件,写入以下代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-…
Hadoop入门知识 Hadoop构成 Hadoop由4个主要构成部分: 1) 基础核心:提供基础的通用的功能 2) HDFS:分布式存储 3) MapReduce:分布式计算 4) YARN:资源分配(多个任务是排队执行还是同时执行) HDFS构成 HDFS由3种主要的节点构成: 1) NameNode  用来存储数据的存放位置等元数据(不存放数据) 2) DataNode 只用来存储数据 3) SecondaryNameNode 辅助NameNode运行,将NameNode产生的元数据持久化…