机器学习:正态方程 python实现】的更多相关文章

目录 前言 一.算法介绍 二.核心算法 1. 公式 2.python实现 总结 前言 使用python简单实现机器学习中正态方程算法. 一.算法介绍 与梯度下降算法相比,正态方程同样用于解决最小化代价函数J,不同的是,梯度下降算法通过迭代计算获得最小J的theta值,而正态方程则是通过直接对J进行求导,直接获得满足条件的theta值. 二.核心算法 1. 公式 正态方程通过矩阵运算求得theta. X为数据集中x的矩阵,y为数据集中y的矩阵. 2.python实现 import numpy as…
opencv3.0版本中,实现正态贝叶斯分类器(Normal Bayes Classifier)分类实例 #include "stdafx.h" #include "opencv2/opencv.hpp" using namespace cv; using namespace cv::ml; int main(int, char**) { , height = ; Mat image = Mat::zeros(height, width, CV_8UC3); //创…
编辑 | MingMing 尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展.最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整理了一份迄今为止我发现的最好的教程内容列表. 通过教程中的简介内容讲述一个概念.避免了包括书籍章节涵盖范围广,以及研究论文在教学理念上做的不好的特点. 我把这篇文章分成四个部分:机器学习.NLP.Python和数学. 每个部分中都包含了一些主题文章,但是由于材料巨大,每个部分不可能包含所有可能的主题…
[译文]利用STAN做贝叶斯回归分析:Part 2 非正态回归 作者 Lionel Hertzogn 前一篇文章已经介绍了怎样在R中调用STAN对正态数据进行贝叶斯回归.本文则将利用三个样例来演示怎样在R中利用STAN拟合非正态模型. 三个样例各自是negative binomial回归(过离散的泊松数据).gamma回归(右偏的连续数据)和beta-binomial回归(过离散的二项数据). 相关的STAN代码及一些说明会贴在本文末尾. 负二项回归 泊松分布经常使用于计数数据建模,它如果了数据…
来源:丁香园论坛:SPSS上的把非正态分布数据转换为正态分布数据 一楼 可以应用变量变换的方法,将不服从正态分布的资料转化为非正态分布或近似正态分布.常用的变量变换方法有对数变换.平方根变换.倒数变换.平方根反正玄变换等,应根据资料性质选择适当的变量变换方法. 对数变换 即将原始数据X的对数值作为新的分布数据: X'=lgX 当原始数据中有小值及零时,亦可取X'=lg(X+1) 还可根据需要选用X'=lg(X+k)或X'=lg(k-X) 对数变换常用于(1)使服从对数正态分布的数据正态化.如环境…
code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && document.readyState && document.readyState === "complete") { window.setTimeout(function() { hljs.initHighlighting(); }, 0);} .main-container…
正态检验与R语言 1.Kolmogorov–Smirnov test 统计学里, Kolmogorov–Smirnov 检验(亦称:K–S 检验)是用来检验数据是否符合某种分布的一种非参数检验,通过比较一个频率分布f(x)与理论分布g(x)或者两个观测值分布来判断是否符合检验假设.其原假设H0:两个数据分布一致或者数据符合理论分布.拒绝域构造为:D=max| f(x)- g(x)|,当实际观测值D>D(n,α)则拒绝H0,否则则接受H0假设.由于KS检验不需要知道数据的分布情况,在小样本的统计分…
机器学习的发展可以追溯到1959年,有着丰富的历史.这个领域也正在以前所未有的速度进化.在之前的一篇文章中,我们讨论过为什么通用人工智能领域即将要爆发.有兴趣入坑ML的小伙伴不要拖延了,时不我待! 在今年秋季开始准备博士项目的时候,我已经精选了一些有关机器学习和NLP的优质网络资源.一般我会找一个有意思的教程或者视频,再由此找到三四个,甚至更多的教程或者视频.猛回头,发现标收藏夹又多了20个资源待我学习(推荐提升效率工具Tab Bundler). 找到超过25个有关ML的"小抄"后,我…
简介 前置声明:本专栏的所有文章皆为本人学习时所做笔记而整理成篇,转载需授权且需注明文章来源,禁止商业用途,仅供学习交流.(欢迎大家提供宝贵的意见,共同进步) 正文: 机器学习,顾名思义,就是研究计算机如何学习和模拟人类的行为,并根据已学得的知识对该行为进行增强和改进. 举例来说,假设邮箱收到了一封新邮件,通常我们可以通过邮件里是否含有广告.不相关信息以及乱码等特征,人为的来判断这封邮件是否是一封垃圾邮件. 如上述可知,机器学习模拟人类的行为,所以它同样依据这些邮件内容的特征来判断一封邮件是否是…
本文转载自:https://juejin.im/post/5a924df16fb9a0634514d6e1 机器学习之线性回归(纯python实现) 线性回归是机器学习中最基本的一个算法,大部分算法都是由基本的算法演变而来.本文着重用很简单的语言说一下线性回归. 线性回归 包括一元线性回归和多元线性回归,一元指的是只有一个x和一个y.通过一元对于线性回归有个基本的理解. 一元线性回归就是在数据中找到一条直线,以最小的误差来(Loss)来拟和数据. 上面提到的误差可以这样表示,假设那条直线如下图:…