[转载]Pytorch中nn.Linear module的理解】的更多相关文章

[转载]Pytorch中nn.Linear module的理解 本文转载并援引全文纯粹是为了构建和分类自己的知识,方便自己未来的查找,没啥其他意思. 这个模块要实现的公式是:y=xAT+*b 来源:https://blog.csdn.net/u012936765/article/details/52671156 Linear 是module的子类,是参数化module的一种,与其名称一样,表示着一种线性变换. 创建 parent 的init函数 Linear的创建需要两个参数,inputSize…
Pytorch中nn.Conv2d的用法 nn.Conv2d是二维卷积方法,相对应的还有一维卷积方法nn.Conv1d,常用于文本数据的处理,而nn.Conv2d一般用于二维图像. 先看一下接口定义: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 参数解释: stride:步长 zero-padding:图像四周…
[转载]PyTorch中permute的用法 来源:https://blog.csdn.net/york1996/article/details/81876886 permute(dims) 将tensor的维度换位. 参数:参数是一系列的整数,代表原来张量的维度.比如三维就有0,1,2这些dimension. 例: import torch import numpy as np a=np.array([[[1,2,3],[4,5,6]]]) unpermuted=torch.tensor(a)…
Pytorch中nn.Dropout2d的作用 首先,关于Dropout方法,这篇博文有详细的介绍.简单来说, 我们在前向传播的时候,让某个神经元的激活值以一定的概率p停止工作,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征 dropout方法有很多类型,图像处理中最常用的是Dropout2d,我从网上找了很多的中文资料,都没有让人满意的介绍,意外发现源代码dropout.py中的介绍还挺好的: Randomly zero out entire channels:A channel i…
import torch x = torch.randn(128, 20) # 输入的维度是(128,20)m = torch.nn.Linear(20, 30) # 20,30是指维度output = m(x)print('m.weight.shape:\n ', m.weight.shape)print('m.bias.shape:\n', m.bias.shape)print('output.shape:\n', output.shape) # ans = torch.mm(input,t…
LINEAR LAYERS Linear Examples: >>> m = nn.Linear(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30]) 查看源码后发现U指的是均匀分布,即weight权重(A的转置)是取自输入尺寸的倒数再开方后的正负值之间的均匀分布,同理可…
torch.nn 是专门为神经网络设计的模块化接口,nn构建于autgrad之上,可以用来定义和运行神经网络 nn.Module 是nn中重要的类,包含网络各层的定义,以及forward方法 对于自己定义的网络,需要注意以下几点: 1)需要继承nn.Module类,并实现forward方法,只要在nn.Module的子类中定义forward方法,backward函数就会被自动实现(利用autograd机制) 2)一般把网络中可学习参数的层放在构造函数中__init__(),没有可学习参数的层如R…
作者:infiniteft链接:https://www.zhihu.com/question/66782101/answer/579393790来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 两者的相同之处: nn.Xxx和nn.functional.xxx的实际功能是相同的,即nn.Conv2d和nn.functional.conv2d 都是进行卷积,nn.Dropout 和nn.functional.dropout都是进行dropout,.....: 运行效率…
下文都将torch.nn简写成nn Module: 就是我们常用的torch.nn.Module类,你定义的所有网络结构都必须继承这个类. Buffer: buffer和parameter相对,就是指那些不需要参与反向传播的参数 示例如下: class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.my_tensor = torch.randn(1) # 参数直接作为模型类成员变量 sel…
模型训练的三要素:数据处理.损失函数.优化算法    数据处理(模块torch.utils.data) 从线性回归的的简洁实现-初始化模型参数(模块torch.nn.init)开始 from torch.nn import init # pytorch的init模块提供了多中参数初始化方法 init.normal_(net[0].weight, mean=0, std=0.01) #初始化net[0].weight的期望为0,标准差为0.01的正态分布tensor init.constant_(…