题意:切一个凸边行,如果不是凸包直接输出.然后输出最小代价的切割费用,把凸包都切割成三角形. 先判断是否是凸包,然后用三角形优化. dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+w[i][k]+w[j][k]); w[i][j]代表i到j点的切割费用. dp[i][j]:表示以i到j点的最小费用.则可把凸边行分成三个部分的费用.两个凸边行(i,k),(k,j)和两条边的费用(i,k),(j,k),k为枚举的三角形顶点. Zoj 3537 Cake (DP_最优三…
这道题目是经典的凸包的最优三角剖分,不过这个题目给的可能不是凸包,所以要提前判定一下是否为凸包,如果是凸包的话才能继续剖分,dp[i][j]表示已经排好序的凸包上的点i->j上被分割成一个个小三角形的最小费用,那么dp[i][j] = min(dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]),其中,(j >= i+ 3,i+1<=k<=j-1,cost[i][k]为连一条i到k的线的费用). 上一个图,来自博客http://blog.csdn.net…
下面是别人的解题报告的链接,讲解很详细,要注意细节的处理...以及为什么可以这样做 http://blog.csdn.net/woshi250hua/article/details/7824433 我的代码: //其中求凸包用的是Andrew扫描算法,复杂度主要为排序O(n*logn),扫描为O(n) #include <cstdio> #include <algorithm> #define INF 100000000 #define min(a,b) a<b?a:b; u…
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形(凸包)则不能切,直接输出"I can't cut."切多边形时每次只能在顶点和顶点间切,每切一次的花费为 cost(i, j) = |xi + xj| * |yi + yj| % p.问把多边形切成最多个不相交三角形的最小代价是多少. 解题思路:先求出凸包,接着可以用区间DP解决,设dp…
题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价是多少. 思路:首先判断多边形是否是凸多边形,之后就是区间dp了. 求出凸包后,按逆时针来看. 设置dp[i][j]为从顶点i到顶点j所围成凸多边形的最优解. 枚举切点k (i < k < j) dp[i][j] = min(dp[i][k] + dp[k][j] + cost[i][k] + c…
由于题目要求,首先维护出一个凸包,然后在凸包上寻找点对关系,用rel[i][j]表示i点和j点之间是否可以连线,又由于维护出来的凸包上的点的个数不多,可以直接枚举点对并枚举所有圆,判断两点直线和圆是否相离,由于维护出来的凸包已经按照逆时针排序,又要满足两两线段不相交,最后就变成了求最大不相交线段个数,但是可以包含(2-5线段可以包含3-4,但是不能选择3-6),然后考虑区间DP去枚举所有情况,设dp[s][t]表示起点在s终点在t之间的区间内的最大不相交线段个数,枚举终点和起点,再枚举起点到终点…
Food Delivery Time Limit: 2 Seconds      Memory Limit: 65536 KB When we are focusing on solving problems, we usually prefer to stay in front of computers rather than go out for lunch. At this time, we may call for food delivery. Suppose there are N p…
#include "Head.cpp" const int N = 10007; int n, m; struct Point{ int x,y; bool operator < (const Point &com) const{ if(y != com.y) return y < com.y; return x < com.x; } }a[N]; int cost[N][N]; int f[N][N]; Point sta[407],tmp[407]; in…
Description You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of each cut is a line segment, whose two endpoin…
You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of each cut is a line segment, whose two endpoints are two v…