综述: 本文将 CNN 与 FM(Factorization Machine) 结合,基于评论文本来进行评分预测. 简介: 目前将神经网络应用推荐系统的研究工作中,有一类思路是把如CNN等神经网络作为特征提取器,从图片.文本等辅助信息中提取特征向量, ’再融合到传统的如BPR, PMF等基于矩阵分解的推荐系统模型中来提升推荐性能. 相较于ConvMF使用物品的文本描述信息来约束物品对应的隐向量,本文构建了两个并行的CNN模型,一个以用户发表的评论文本作为输入, 提取用户的行为特征:另一个以商品收…
摘要: 传统的评分预测只考虑到了文本信息,没有考虑到用户的信息,因为同一个词 在不同的用户表达中是不一样的.同样good 一词, 有人觉得5分是good 有人觉得4分是good.但是传统的文本向量表达无法区分.所以每个人都应该有一个属于自己的词向量. 传统的是word embedding的方式,这样处理,忽略了文档的生成者的特性. 因此本文讨论的是如何利用用户信息,来“修正”单词的特征表示. 作者提出了一套自己的表达词向量的方式,并不是用的word embedding.. 作者提出了将用户表示为…
1.结构图 Introduction Feature extraction, deformation handling, occlusion handling, and classification are four important components in pedestrian detection. Existing methods learn or design these components either individually or sequentially. The inte…
PCoA:主坐标轴分析 数值型变量使用各种距离公式,而分类变量看是否相同,比如, Aabbcc || Aaffff 其中,两个相同,4个不同,一组6个,则(6+6-2*2)=8. PC0A与PCA区别在于PCoA有多种计算距离公式. NMDS: 两者之差比两者之和,得到similarity得分,按分排序.所以,S是similarity,值越大越相似. 对差距不敏感只有排序,多一个物种或者类群差距都不大,稳健性. STRESS来衡量转换的好坏,低于0.05比较好. RDA or RA用矩阵解释矩阵…
注意:论文中,很多的地方出现baseline,可以理解为参照物的意思,但是在论文中,我们还是直接将它称之为基线,也 就是对照物,参照物. 这片论文中,作者没有去做实际的实验,但是却做了一件很有意义的事,他收罗了近些年所有推荐系统中涉及到深度学习的文章 ,并将这些文章进行分类,逐一分析,然后最后给出了一个推荐系统以后的发展方向的预估. 那么通过这篇论文,我们可以较为 系统的掌握这些年,在推荐系统方面,深度学习都有那些好玩的应用,有哪些新奇的方法,下面是论文的一个粗糙翻译: 概述:   随着互联网上…
论文:Deep Neural Networks for YouTube Recommendations 发表时间:2016 发表作者:(Google)Paul Covington, Jay Adams, Emre Sargin 发表刊物/会议:RecSys 论文链接:论文链接 这篇论文是google的YouTube团队在推荐系统上DNN方面的尝试,发表在16年9 月的RecSys会议.本文就focus在YouTube视频推荐的DNN算法,文中不但详细介绍了Youtube推荐算法和架构细节,还给了…
背景 在CTR预估任务中,线性模型仍占有半壁江山.利用手工构造的交叉组合特征来使线性模型具有"记忆性",使模型记住共现频率较高的特征组合,往往也能达到一个不错的baseline,且可解释性强.但这种方式有着较为明显的缺点:首先,特征工程需要耗费太多精力.其次,因为模型是强行记住这些组合特征的,所以对于未曾出现过的特征组合,权重系数为0,无法进行泛化. 为了加强模型的泛化能力,研究者引入了DNN结构,将高维稀疏特征编码为低维稠密的Embedding vector,这种基于Embeddin…
Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN 网络结构上,将卷积神经网络提出的特征,分为两路走,即:the state value function 和 the state-dependent action advantage function. 这个设计的主要特色在于 generalize learning across actions w…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learning What is a Neural Network? 让我们从一个房价预测的例子开始讲起. 假设你有一个数据集,它包含了六栋房子的信息.所以,你知道房屋的面积是多少平方英尺或者平方米,并且知道房屋价格.这时,你想要拟合一个根据房屋面积预测房价的函数. 如果使用线性回归进行拟合,那么可以拟合出一条直线.但…
实时实例分割的Deep Snake:CVPR2020论文点评 Deep Snake for Real-Time Instance Segmentation 论文链接:https://arxiv.org/pdf/2001.01629.pdf 摘要 本文提出了一种基于轮廓的深度snake方法用于实例的实时分割.与最近一些直接从图像中回归物体边界点坐标的方法不同,deep snake使用神经网络迭代地将初始轮廓变形到物体边界,这一方法用基于学习的方法实现了snake算法的经典思想.对于轮廓的结构化特征…