Plese see this answer for a detailed example of how tf.nn.conv2d_backprop_input and tf.nn.conv2d_backprop_filter in an example. In tf.nn, there are 4 closely related 2d conv functions: tf.nn.conv2d tf.nn.conv2d_backprop_filter tf.nn.conv2d_backprop_i…
1.Tensorflow的模型到底是什么样的? Tensorflow模型主要包含网络的设计(图)和训练好的各参数的值等.所以,Tensorflow模型有两个主要的文件: a) Meta graph: 这是一个协议缓冲区(protocol buffer),它完整地保存了Tensorflow图:即所有的变量.操作.集合等.此文件以 .meta 为拓展名. b) Checkpoint 文件: 这是一个二进制文件,包含weights.biases.gradients 和其他所有变量的值.此文件以 .ck…
<c3p0-config> <!-- 默认配置,如果没有指定则使用这个配置 --> <default-config> <property name="driverClass">com.mysql.jdbc.Driver</property> <property name="jdbcUrl"> <![CDATA[jdbc:mysql://127.0.0.1:3306/hncu?useUnic…
cv2.threshold()函数的作用是将一幅灰度图二值化,基本用法如下: #ret:暂时就认为是设定的thresh阈值,mask:二值化的图像 ret,mask = cv2.threshold(img2gray,175,255,cv2.THRESH_BINARY) plt.imshow(mask,cmap='gray') 上面代码的作用是,将灰度图img2gray中灰度值小于175的点置0,灰度值大于175的点置255. 具体用法如下: threshold(src, thresh, maxv…
最近想搞个mailman邮件列表,又不想在我常用的CentOS 6.4上做实验,怕破坏了环境,于是就想装个试验机,又嫌它占空间太大,于是找了半天发现CentOS 6.0的minimal版本最适合了,装完后发现真的是很小,才600多M,不过因为太精简而导致连网络都没有.下面介绍怎么样配置网络,装完系统后紧接着就能按下面步骤来进行了.(注意这是VMware虚拟机,要是你用物理机的话直接用rp-pppoe拨号就行了,详情请见上一篇博文.) 首先打开虚拟机软件,virtual network edito…
不多说,直接上干货! https://www.wireshark.org/download.html 我这里,读取的是,来自于https://www.ll.mit.edu/ideval/data/1999data.html数据集. DARPA 1999 data的第二周的星期一的内网数据集. 或者大家,这里,自己抓取,也是很简单. 得到…
有点笨,参考了好几篇大佬们写的文章才整理出来的笔记.... 字面意思上解释,线程池就是装有线程的池,我们可以把要执行的多线程交给线程池来处理,和连接池的概念一样,通过维护一定数量的线程池来达到多个线程的复用. 好处 多线程产生的问题 一般我们使用到多线程的编程的时候,需要通过new Thread(xxRunnable).start()创建并开启线程,我们可以使用多线程来达到最优效率(如多线程下载). 但是,线程不是越多就越好,线程过多,创建和销毁就会消耗系统的资源,也不方便管理. 除此之外,多线…
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用于信道均衡.图像恢复.语音识别.地震学.无损探伤等未知输入估计和过程辨识方面的问题. 在神经网络的研究中,反卷积更多的是充当可视化的作用,对于一个复杂的深度卷积网络,通过每层若干个卷积核的变换,我们无法知道每个卷积核关注的是什么,变换后的特征是什么样子.通过反卷积的还原,可以对这些问题有个清晰的可视…
一.前向计算和反向传播数学过程讲解…
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, strides表示步长,分别表示为样本数,长,宽,通道数,padding表示补零操作 2. tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  # 对数据进行池化操作 参数说明:x表示输入数据,ksize表示卷…