CNN中最重要的就是参数了,包括W,b. 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值.参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我们能不能自己进行初始化呢? 所有的初始化方法都定义在tensorflow/python/ops/init_ops.py 1.tf.constant_initializer() 也可以简写为tf.Constant() 初始化为常数,这个非常有用,通常偏置项就是用它初始化的. 由它衍生出的两个初始化方法…
博主 撸的  该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8%BE%BE%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/Untitled%20Folder%202/Untitled%20Folder%203/tf_tutorial.ipynb 博主参考的大牛(CSDN  何宽)的实践 :https://blog.csdn.net/u…
一.深度学习与深层神经网络 深层神经网络是实现“多层非线性变换”的一种方法. 深层神经网络有两个非常重要的特性:深层和非线性. 1.1线性模型的局限性 线性模型:y =wx+b 线性模型的最大特点就是任意线性模型的组合仍然还是线性模型. 如果只通过线性变换,任意层的全连接神经网络和单层神经网络模型的表达能力没有任何的区别,它们都是线性模型.然而线性模型能够解决的问题是有限的. 如果一个问题是线性不可分的,通过线性模型就无法很好的去分类这些问题. 1.2激活函数实现去线性化 神经元的输出为所有输入…
维基百科对深度学习的精确定义为“一类通过多层非线性变换对高复杂性数据建模算法的合集”.因为深层神经网络是实现“多层非线性变换”最常用的一种方法,所以在实际中可以认为深度学习就是深度神经网络的代名词.从维基百科给出的定义可以看出,深度学习有两个非常重要的特性——多层和非线性.那么为什么要强调这两个性质呢?下面我们开始学习. 1,线性模型的局限性 在线性模型中,模型的输出为输入的加权和.假设一个模型的输出 y  和输入 xi 满足以下关系,那么这个模型就是一个线性模型: 其中,wi , b € R…
CNN中最重要的就是参数了,包括W,b. 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值.参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我们能不能自己进行初始化呢? 所有的初始化方法都定义在tensorflow/python/ops/init_ops.py 1.tf.constant_initializer() 也可以简写为tf.Constant() 初始化为常数,这个非常有用,通常偏置项就是用它初始化的. 由它衍生出的两个初始化方法…
1. 初始化为常量 tf中使用tf.constant_initializer(value)类生成一个初始值为常量value的tensor对象. constant_initializer类的构造函数定义: def __init__(self, value=0, dtype=dtypes.float32, verify_shape=False): self.value = value self.dtype = dtypes.as_dtype(dtype) self._verify_shape = v…
pytorch和tensorflow的爱恨情仇之基本数据类型 pytorch和tensorflow的爱恨情仇之张量 pytorch和tensorflow的爱恨情仇之定义可训练的参数 pytorch版本:1.6.0 tensorflow版本:1.15.0 关于参数初始化,主要的就是一些数学中的分布,比如正态分布.均匀分布等等. 1.pytorch (1)自定义可训练参数 torch.bernoulli(input, out=None) → Tensor 从伯努利分布中抽取二进制随机数 (0 或 1…
#coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #每个批次的大小 batch_size = 100 n_batch = mnist.train._num_examples // batch_size def weight_varia…
首先是模型参数和网络结构的保存 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #每个批次的大小 batch_size = 100 n_batch = mnist.train._num_examples // batch_size…
构造函数是一种特殊的成员函数,在创建对象时自动执行,主要用来进行初始化工作,例如对 private 属性的成员变量赋值. 对成员变量的初始化,除了在构造函数的函数体中一一赋值,还可以采用参数初始化表.请看下面的代码: class Student{ private: char *name; int age; float score; public: Student(char *, int, float); void say(); }; //在构造函数中采用参数初始化表 Student::Stude…