本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 梯度下降法 (Gradient Descent) 梯度下降法是一种用来寻找函数最小值的算法.算法的思想非常简单:每次沿与当前梯度方向相反的方向走一小步,并不断重复这一过程.举例如下: [例]使用梯度下降法,求z=0.3x2+0.4y2+2的最小值. 第一步:求解迭代格式.根据“每次沿与当前梯度方向相反的方向走一小步”的思想,可知x(k…
分类任务 原始方法:通过将线性回归的输出映射到0-1,设定阈值来实现分类任务 改进方法:原始方法的效果在实际应用中表现不好,因为分类任务通常不是线性函数,因此提出了逻辑回归 逻辑回归 假设表示--引入sigmoid函数g sigmoid函数将输出映射到区间(0,1),可以看作是概率 损失函数 多分类 训练多个逻辑回归二分类器,对新的样本取预测概率最高的一个类别 欠拟合与过拟合 欠拟合:高偏差,模型没有很好地捕捉到数据的结构,通常是因为模型太简单,使用特征太少 过拟合:高方差,可以很好地拟合可用数…
DA就是“Denoising Autoencoders”的缩写.继续给yusugomori做注释,边注释边学习.看了一些DA的材料,基本上都在前面“转载”了.学习中间总有个疑问:DA和RBM到底啥区别?(别笑,我不是“学院派”的看Deep Learning理论,如果“顺次”看下来,可能不会有这个问题),现在了解的差不多了,详情见:[deep learning学习笔记]Autoencoder.之后,又有个疑问,DA具体的权重更新公式是怎么推导出来的?我知道是BP算法,不过具体公示的推导.偏导数的求…
既<Machine Learning>课程后,Andrew Ng又推出了新一系列的课程<DeepLearning.ai>,注册了一下可以试听7天.之后每个月要$49,想想还是有点贵,所以能听到哪儿算哪儿吧... Week one主要讲了近年来为啥Deep learning火起来了,有时间另起一贴总结一下. Week two回顾了Logistic Regression(逻辑回归).虽然它听上去已经不是一个陌生的概念了,但是每次想起时还是会迟疑一下,所以干脆记录一发备忘. 1. 逻辑回…
Lecture6 Logistic Regression 逻辑回归 6.1 分类问题 Classification6.2 假设表示 Hypothesis Representation6.3 决策边界 Decision Boundary6.4 代价函数 Cost Function6.5 简化的代价函数和梯度下降 Simplified Cost Function and Gradient Descent6.6 高级优化 Advanced Optimization6.7 多类别分类:一对多  Mult…
逻辑回归主要用于解决分类问题,在现实中有更多的运用, 正常邮件or垃圾邮件 车or行人 涨价or不涨价 用我们EE的例子就是: 高电平or低电平 同时逻辑回归也是后面神经网络到深度学习的基础. (原来编辑器就有分割线的功能啊……) 一.Logistic Function(逻辑方程) 同线性回归,我们会有一个Hypothesis Function对输入数据进行计算已得到一个输出值. 考虑到分类问题的特点,常用的函数有sigmoid方程(又叫logistic方程) 其函数图像如下 可见: 1.输出区…
继续看yusugomori的代码,看逻辑回归.在DBN(Deep Blief Network)中,下面几层是RBM,最上层就是LR了.关于回归.二类回归.以及逻辑回归,资料就是前面转的几篇.套路就是设定目标函数(softmax损失函数),对参数求偏导数,得出权重更新公式等. LogisticRegression.h注释如下: class LogisticRegression { public: int N; // number of input samples int n_in; // numb…
Logistic Regression with a Neural Network mindset You will learn to: Build the general architecture of a learning algorithm, including: Initializing parameters(初始化参数) Calculating the cost function and its gradient(计算代价函数,和他的梯度) Using an optimization…
一.文章来由 好久没写原创博客了,一直处于学习新知识的阶段.来新加坡也有一个星期,搞定签证.入学等杂事之后,今天上午与导师确定了接下来的研究任务,我平时基本也是把博客当作联机版的云笔记~~如果有写的不对的地方,欢迎批评指正. 二.<一天搞懂深度学习> 300多页的PPT,台大教授写的好文章. 对应的视频地址 1.Lecture I: Introduction of Deep Learning (1)machine learning≈找函数 training和testing过程 (2)单个神经网…
百度了半天yusugomori,也不知道他是谁.不过这位老兄写了deep learning的代码,包括RBM.逻辑回归.DBN.autoencoder等,实现语言包括c.c++.java.python等.是学习的好材料.代码下载地址:https://github.com/yusugomori/DeepLearning.不过这位老兄不喜欢写注释,而且这些模型的原理.公式什么的,不了解的话就看不懂代码.我从给他写注释开始,边看资料.边理解它的代码.边给他写上注释. 工具包中RBM的实现包含了两个文件…