P2038 无线网络发射器选址 题目描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129 条东西向街道和129 条南北向街道所形成的网格状,并且相邻的平行街道之间的距离都是恒定值 1 .东西向街道从北到南依次编号为0,1,2…128 , 南北向街道从西到东依次编号为0,1,2…128 . 东西向街道和南北向街道相交形成路口,规定编号为x 的南北向街道和编号为y 的东西向街道形成的路口的坐标是(x , y ). 在…
摘要:本文讲解二维码纠错码字生成使用到的数学数论基础知识,伽罗瓦域(Galois Field)GF(2^8),这是手绘二维码填格子理论基础,不想深究可以直接跳过.同时数论基础也是 Hash 算法,RSA 算法等密码学的入门基础. 二维码生成算法最为核心的就是编码规则和纠错码字的生成.本篇专门讲解纠错涉及到的伽罗瓦域(Galois Field).本文内容大部分是阅读<密码编码学与网络安全>后参考相关 PPT 编写,如有遗漏或不严谨地方请参考专业书籍. 数论基础 整除,因数,素数 设 a , b(…
引言:做2048小游戏会将横纵方向的数字内容,存储在一个二维数组中,要将这个二维数组中的内容显示在页面上,就一定要用遍历算法来实现了. 一.二维数组存储    首先考虑用二维数组存储所有行数,列数  →  var  RN=4,CN=4; 然后再定义一个变量data 来保存这个二维数组  →  var  data; 游戏的所有主要执行程序都保存在start()函数下 → 启动游戏 保存存有行数,列数的二维数组到data中    关键代码 ↓ function start(){ data=[]; /…
from:https://blog.csdn.net/xjz18298268521/article/details/79079008 NASNet总结 论文:<Learning Transferable Architectures for Scalable Image Recognition> 注   先啥都不说,看看论文的实验结果,图1和图2是NASNet与其他主流的网络在ImageNet上测试的结果的对比,图3是NASNet迁移到目标检测任务上的检测结果,从这图瞬间感觉论文的厉害之处了,值…
转载地址:http://blog.csdn.net/watkinsong/article/details/38536463 1. 前言 PCA : principal component analysis ( 主成分分析) 最近发现我的一篇关于PCA算法总结以及个人理解的博客的访问量比较高, 刚好目前又重新学习了一下PCA (主成分分析) 降维算法, 所以打算把目前掌握的做个全面的整理总结, 能够对有需要的人有帮助. 自己再看自己写的那个关于PCA的博客, 发现还是比较混乱的, 希望这里能过做好…
​  转载于比PCA降维更高级--(R/Python)t-SNE聚类算法实践指南-阿里云开发者社区 作者介绍:Saurabh.jaju2 Saurabh是一名数据科学家和软件工程师,熟练分析各种数据集和开发智能应用程序.他目前正在加州大学伯克利分校攻读信息和数据科学硕士学位,热衷于开发基于数据科学的智能资源管理系统. Linkedin:LinkedIn Login, Sign in | LinkedIn Github:https://github.com/saurabhjaju2 介绍 许多数据…
摘要:残差网络(ResNet)的提出是为了解决深度神经网络的"退化"(优化)问题.ResNet 通过设计残差块结构,调整模型结构,让更深的模型能够有效训练更训练. 本文分享自华为云社区<Backbone 网络-ResNet 网络详解>,作者: 嵌入式视觉 . 摘要 残差网络(ResNet)的提出是为了解决深度神经网络的"退化"(优化)问题. 有论文指出,神经网络越来越深的时候,反传回来的梯度之间的相关性会越来越差,最后接近白噪声.即更深的卷积网络会产生梯…
四大机器学习降维算法:PCA.LDA.LLE.Laplacian Eigenmaps 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据.之所以使用降维…
ResNet网络 ResNet原理和实现 总结 一.ResNet原理和实现 神经网络第一次出现在1998年,当时用5层的全连接网络LetNet实现了手写数字识别,现在这个模型已经是神经网络界的“helloworld”,一些能够构建神经网络的库比如TensorFlow.keras等等会把这个模型当成第一个入门例程.后来卷积神经网络(Convolutional Neural Networks, CNN)一出现就秒杀了全连接神经网络,用卷积核代替全连接,大大降低了参数个数,网络因此也能延伸到十几层到二…
一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在生物信息学.信号处理.金融学.统计学等领域有重要应用,SVD都是提取信息的强度工具.在机器学习领域,很多应用与奇异值都有关系,比如推荐系统.数据压缩(以图像压缩为代表).搜索引擎语义层次检索的LSI等等.(本文原创,转载必须注明出处.) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 …