DLNg序列模型第二周NLP与词嵌入】的更多相关文章

1.使用词嵌入 给了一个命名实体识别的例子,如果两句分别是“orange farmer”和“apple farmer”,由于两种都是比较常见的,那么可以判断主语为人名. 但是如果是榴莲种植员可能就无法判断了,因为比较不常见. 此时使用 词嵌入,是一个训练好的模型,能够表示说,oragne和durian是类似的词,farmer和cultivator是同义词. 词向量需要在大量数据上进行训练,此时又谈到了迁移学习. 首先从大的语料库中学习词嵌入,然后将模型运用到小的数据集上,或许还可以从小数据集上更…
1.为何选择序列模型? 给出上面一些序列数据的例子,真的很神奇,语音识别.音乐生成.情感分类.DNS序列分析.机器翻译.视频活动检测.命名实体识别. 2.数字符号 对于输入序列x,进行人名识别,输出中进行标识.其中T_x(i)表示第i个序列的长度,此处的例子=9. 如何表示单词,首先是有一个词典,假设为10000长度,那么每一个出现在字典中的单词都可以被表示为10000维的one-hot向量. //但是这也太高维了,肯定有改进办法的. 3.RNN 为什么标准的神经网络不可以? 1.对于序列来说,…
一.词汇表征 首先回顾一下之前介绍的单词表示方法,即one hot表示法. 如下图示,"Man"这个单词可以用 \(O_{5391}\) 表示,其中O表示One_hot.其他单词同理. 但是这样的表示方法有一个缺点,看是看下图中右侧给出的例子,比如给出这么一句不完整的话: **I want a glass of orange ___** 假设通过LSTM算法学到了空白处应该填"juice".但是如果将orange改成apple,即 **I want a glass…
1. Word representation One-hot representation的缺点:把每个单词独立对待,导致对相关词的泛化能力不强.比如训练出“I want a glass of orange juice”后,面对“I want a glass of apple          ”,由于任何两个不同单词的one-hot vector的内积都为0,算法不知道orange和apple是一类词,所以没办法泛化出在apple后面填“juice”. Featurized represent…
摘要:今天带领大家学习自然语言处理中的词嵌入的内容. 本文分享自华为云社区<[MindSpore易点通]深度学习系列-词嵌入>,作者:Skytier. 1 特征表示 在自然语言处理中,有一个很关键的概念是词嵌入,这是语言表示的一种方式,可以让算法自动的理解一些同类别的词,比如苹果.橘子,比如袜子.手套. one-hot向量 比如我们通常会说:"I want a glass of orange juice."但如果算法并不知道apple和orange的类似性(这两个one-h…
目录 第一周 循环序列模型 第二周 自然语言处理与词嵌入 第三周 序列模型和注意力机制 第一周 循环序列模型 在进行语音识别时,给定一个输入音频片段X,并要求输出对应的文字记录Y,这个例子中输入和输出数据就是序列模型. 音乐生产问题也是使用序列数据的一个例子. 在自然语言处理中,首先需要决定怎样表示一个序列里单独的单词,解决办法式创建一个词典.然后每个单词的序列表示可以使用该词典长度的一维数组来表示,匹配的位置数据为1,其它位置数据为0. 下面看一个循环神经网络模型: RNN反向传播示意图: 如…
在NLP任务中,训练数据一般是一句话(中文或英文),输入序列数据的每一步是一个字母.我们需要对数据进行的预处理是:先对这些字母使用独热编码再把它输入到RNN中,如字母a表示为(1, 0, 0, 0, …,0),字母b表示为(0, 1, 0, 0, …, 0).如果只考虑小写字母a~z,那么每一步输入的向量的长度是26.如果一句话有1000个单词,我们需要使用 (1000, ) 维度的独热编码表示每一个单词. 缺点: 每一步输入的向量维数会非常大 在独热表示中,所有的单词之间都是平等的,单词间的依…
本文转载自:http://blog.stupidme.me/2018/08/05/tensorflow-nmt-word-embeddings/,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有. 声明:本文由 罗周杨 stupidme.me.lzy@gmail.com 原创,未经授权不得转载 自然语言处理的第一步,就是要将文本表示成计算机能理解的方式.我们将长文本分词之后,得到一个词典,对于词典中的每一个词,我们用一个或者一组数字来表示它们.这样就实现了我们的目标. Embeddi…
Week 2 Quiz: Natural Language Processing and Word Embeddings (第二周测验:自然语言处理与词嵌入) 1.Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000 dimensional, so as to capture the full range of variation…
第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings) 2.1 词汇表征(Word Representation) 词汇表示,目前为止一直都是用词汇表来表示词,上周提到的词汇表,可能是 10000 个单词,我们一直用 one-hot 向量来表示词.这种表示方法的一大缺点就是它把每个词孤立起来,这样使得算法对相关词的泛化能力不强. 换一种表示方式会更好,如果不用 one-hot 表示,而是用特征化的表示来表示每个词,man,w…