LOJ 2586 「APIO2018」选圆圈——KD树】的更多相关文章

题目:https://loj.ac/problem/2586 只会 19 分的暴力. y 都相等,仍然按直径从大到小做.如果当前圆没有被删除,那么用线段树把 [ x-r , x+r ] 都打上它的标记. 看当前圆有没有被删除,只要看 x-r 和 x+r 两个位置上的标记就行了.因为被删除的话当前圆的直径更小,有相交的话, x-r 或 x+r 一定在对方内部.可以 x-r 和 x+r 分别在两个圆内部,看看哪个更大即可. #include<cstdio> #include<cstring&…
题解 不旋转坐标系,TLE,旋转坐标系,最慢一个点0.5s--maya,出题人数据水平很高了-- 好吧,如果你不旋转坐标系,写一个正确性和复杂度未知的K - D树,没有优化,你可以得到87分的好成绩 但是你就是傻逼,你就是写不出来,能有什么办法,APIO Ag滚粗了呗= = 这道题看起来需要用什么东西维护一下平面,查找给定一个圆这个平面内多少个圆和它有交集,可以K - D树 我们考虑维护一个集合里的圆覆盖的矩形,就是最大的横纵坐标和最小的横纵坐标,查询的时候只要看看和当前圆横纵坐标是不是有交集,…
传送门 Description 有\(n\)个圆,每次找到这些圆中半径最大中的编号最小的圆,删除ta及与其有交集的所有圆. 对于每个圆,求出它是被哪一个圆删除的. Solution  K-D Tree 每个点表示这个圆的外接矩形 排序后直接暴力搜索 相当于在搜索过程中进行了剪枝 复杂度玄学 要对全图坐标进行旋转 这题的\(eps\)不要开得太大,\(1e-3\)就行了,不然会莫名的Wa Code  #include<bits/stdc++.h> #define ll long long #de…
题目:https://loj.ac/problem/2585 算答案的时候要二分! 这样的话,就是对于询问位置 x ,二分出一个最小的 mid 使得 [ x-mid , x+mid ] 里包含所有种类的商店. 判断一个区间里包含所有种类商店的方法是对于每种商店,记录每个这种商店的同类型前驱:然后看看 [ x+mid+1 , INF ] 里所有种类商店的前驱最小值是不是 < x+mid 就行了. 实现方法就是对于每个种类开一个 set 维护该种类商店的所有位置,再对所有种类开一个线段树维护这个区间…
#2585. 「APIO2018」新家 https://loj.ac/problem/2585 分析: 线段树+二分. 首先看怎样数颜色,正常的时候,离线扫一遍右端点,每次只记录最右边的点,然后查询左端点,这里不太行.这里只需要统计是否全出现过,pre[i]为这个颜色的上一个位置,那么这也就说明了pre[i]+1这段区间没出现过,所以要求[r+1,n]这段区间的最小的pre都要大于等于l.于是这就是线段树区间查询最小值了. 注意的是,每个点的pre有多个,每个叶子节点包含一个set,把所有的值插…
题意:w×h网格中有n个点,m条边.每条边可以从p点花费t时间到一个矩形中的任意点,求1号点到每个点的最少时间. \(1<=w,h<=n<=70000,1<=m<=150000\) 时间2s,空间128M. 本题如果放在序列上,使用线段树建图,可以做到\(O(mlogn)\)的复杂度,通过数据分治可以获得72分. 对于二维问题可以想到将线段树变为二维线段树,然而会被卡空间. 考虑此题暴力Dij的本质:就是每次找最小的点,然后把一个矩形中大于z的数都改为z,再删除这个点. 看到…
是不是$ vector$存图非常慢啊...... 题意:求数对$(x,y,z)$的数量使得存在一条$x$到$z$的路径上经过$y$,要求$x,y,z$两两不同  LOJ #2587 $ Solution:$ 首先考虑一棵树的情况怎么做 我们枚举每一个点计算贡献,贡献即为经过这个点的链的数量 只要求出这个点的所有子树大小就可以算出这个贡献 然后发现如果某条链经过某个点双联通分量 这个连通分量里的所有点都会被这条链的端点对计算贡献 我们直接构建圆方树,令方点的权值为这个点双连通分量的大小 由于每个圆…
题目:https://loj.ac/problem/2587 先写了 47 分暴力. 对于 n<=50 的部分, n3 枚举三个点,把图的圆方树建出来,合法条件是 c 是 s -> f 路径上的方点连出去的某个圆点.像找 LCA 那样走一遍 s -> f 路径即可. 对于树的部分,考虑一条路径对答案的贡献是其边数减 1 ,所以对于每条边求一下它在多少路径中,就是 siz[ v ] * ( n-siz[ v ] ) ( v 是它指向的点),然后答案再减去 \( C_n^2 \) 即可. 注…
题目描述 比特镇的路网由 \(m\) 条双向道路连接的 \(n\) 个交叉路口组成. 最近,比特镇获得了一场铁人两项锦标赛的主办权.这场比赛共有两段赛程:选手先完成一段长跑赛程,然后骑自行车完成第二段赛程. 比赛的路线要按照如下方法规划: 1.先选择三个两两互不相同的路口 \(s\) ,\(c\) 和 \(f\) ,分别作为比赛的起点.切换点(运动员在长跑到达这个点后,骑自行车前往终点).终点. 2.选择一条从 \(s\) 出发,经过 \(c\) 最终到达 \(f\) 的路径.考虑到安全因素,选…
题意 给你一个长为 \(n\) 的排列 \(p\) ,问你有多少个等长的排列满足 字典序比 \(p\) 大 : 它进行冒泡排序所需要交换的次数可以取到下界,也就是令第 \(i\) 个数为 \(a_i\) ,下界为 \(\displaystyle \sum_{i=1}^{n} |i - a_i|\) . 题解 一道特别好的题,理解后做完是真的舒畅- 参考了 liuzhangfeiabc 大佬的博客 . 首先我们观察一下最后的序列有什么性质: 考试 打表 观察的:对于每个数来说,它后面所有小于它的数…