数学-Matrix Tree定理证明】的更多相关文章

老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而MatrixTree没人证我就写一下吧-- Matrix Tree结论 Matrix Tree的结论网上可多,大概一条主要的就是,图中生成树的数量等于 \(V-E\) 的任一余子式,其中: \(V\) 为对角阵,第 \(i\) 个元素为点 \(i\) 的度数 \(E\) 为对称阵,对角线为零且 \(E_{i,…
[背诵手记]Matrix Tree定理和一些推广 结论 对于一个无向图\(G=(V,E)\),暂时钦定他是简单图,定义以下矩阵: (入)度数矩阵\(D\),其中\(D_{ii}=deg_i\).其他=0 邻接矩阵\(A\),其中\(A_{ij}=[\exist e=(i,j)]\).其他=0 (*******wait!*******) 关联矩阵\(B\),其中\(B_{ij}=[\exist e_i=(a,b)](-1)^{[a>b]}\).其他=0(后面会用到) 拉普拉斯矩阵\(L=D-A\)…
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第 一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m行,每行包含两个整数:a, b, c,表示节点…
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part - 4@ @2 - 一些简单的推广@ @3 - 例题与应用@ @4 - prüfer 序列@ @0 - 参考资料@ MoebiusMeow 的讲解(超喜欢这个博主的!) 网上找的另外一篇讲解 @0.5 - 你所需要了解的线性代数知识@ 什么是矩阵? 什么是高斯消元?这个虽然与主题无关,但是求解行列…
题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元.) //注意题目是将所有房间(这些才是点)连成一棵树,墙非节点,即行列式中只存在表示房间的点.否则就很可能无解了.. #include <cstdio> #include <algorithm> #define mod (1000000000) const int N=103,way[…
题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只有一条路径. \(Solution\) 生成树计数 直接上Matrix Tree 无解情况别忘了判 MatrixTree定理大体见这吧,证明别的应用什么的先不管了. 基尔霍夫矩阵=度数矩阵-边矩阵. #include <cmath> #include <cstdio> #include…
0 写在前面 本文受 NaVi_Awson 的启发,甚至一些地方直接引用,在此说明. 1 数论 1.0 gcd 1.0.0 gcd $gcd(a,b) = gcd(b,a\;mod\;b)$ 证明:设 $c\mid a$,$c\mid b$,则 $c\mid (b-a)$. 设 $c\nmid a$,则 $c$ 不是 $a,b-a$ 的公因子. 设 $c\mid a$,$c\nmid b$,则 $c$ 不是 $a,b-a$ 的公因子. int gcd(int a,int b){ if(!b) r…
写在前面 由于上一篇总结的版面限制,特开此文来记录 \(OI\) 中多项式类数学相关的问题. 该文启发于Miskcoo的博客,甚至一些地方直接引用,在此特别说明:若文章中出现错误,烦请告知. 感谢你的造访. 前置技能 多项式相关 形同 \(P(X)=a_0+a_1X+a_2X^2+\cdots+a_nX^n\) 的形式幂级数 \(P(X)\) 称为多项式.其中 \(\{a_i|i\in[0,n]\}\) 为多项式的系数: \(n\) 表示多项式的次数. 多项式的系数表示 对于 \(n\) 次多项…
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. 该文于 2018.3.31 完成最后一次修改(若有出错的地方,之后也会进行维护).其主要内容限于数论和组合计数类数学相关问题.因为版面原因,其余数学方面的总结会以全新的博文呈现. 感谢你的造访. 0.1 记号说明 由于该文完成的间隔跨度太大,不同时期的内容的写法不严谨,甚至 $LaTeX$ 也有许多…
目录 写在前面 前置技能 多项式相关 多项式的系数表示 多项式的点值表示 复数相关 复数的意义 复数的基本运算 单位根 代码相关 多项式乘法 快速傅里叶变换 DFT IDFT 算法实现 递归实现 迭代实现 快速数论变换 原根 算法实现 模数任意的解决方案 应用 快速卷积 多项式求逆 基本概念 求解方法 算法实现 求第二类斯特林数 第二类斯特林数 \(\text{NTT}\) 优化 快速沃尔什变换 \(xor\) 卷积 结论(三种卷积求法) 正向 \(\text{tf}\) 逆向 \(\text{…