最小生成树(二)prim】的更多相关文章

今天为大家带来最小生成树的第二种实现方式,比起kruskal来说,prim相对要复杂一些,在稠密图的表现中表现较好,最优情况下也是nlogn级别. 描述: 1).输入:一个加权连通图,其中顶点集合为V,边集合为E: 2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空: 3).重复下列操作,直到Vnew = V: a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条…
#1097 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但是,问题也接踵而来——小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道路所需要的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A.B.C三座城市,只需要在AB之间和BC之间建造道路,那么AC之间也是可以通过…
在边赋权图中,权值总和最小的生成树称为最小生成树.构造最小生成树有两种算法,分别是prim算法和kruskal算法.在边赋权图中,如下图所示: 在上述赋权图中,可以看到图的顶点编号和顶点之间邻接边的权值,若要以上图来构建最小生成树.结果应该如下所示: 这样构建的最小生成树的权值总和最小,为17 在构建最小生成树中,一般有两种算法,prim算法和kruskal算法 在prim算法中,通过加入最小邻接边的方法来建立最小生成树算法.首先构造一个零图,在选一个初始顶点加入到新集合中,然后分别在原先的顶点…
   构造最小生成树的Prim算法    假设G=(V,E)为一连通网,其中V为网中所有顶点的集合,E为网中所有带权边的集合.设置两个新的集合U和T,其中集合U用于存放G的最小生成树的顶点,集合T用于存放G的最小生成树中的边.令集合U的初值为U={u0}(假设构造最小生成树时是从顶点u0出发),集合T的初值为T={}.Prim算法的思想是:在连通网中寻找一个顶点落入U集,另外一个顶点落入V-U集的这个顶点加入到U集中,然后继续寻找一顶点在U集而另一顶点在V-U集且权值最小的边放入T集;如果不断重…
#1098 : 最小生成树二·Kruscal算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用了——但是幸运的是,经过计算机的分析,小Hi已经筛选出了一些比较适合建造道路的路线,这个数量并没有特别的大. 所以问题变成了——小Hi现在手上拥有N座城市,且已知其中一些城市间建造道路的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A.B.C三座城市,…
#1098 : 最小生成树二·Kruscal算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用了——但是幸运的是,经过计算机的分析,小Hi已经筛选出了一些比较适合建造道路的路线,这个数量并没有特别的大. 所以问题变成了——小Hi现在手上拥有N座城市,且已知其中一些城市间建造道路的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以 通过所建造的道路互相到达(假设有A.B.C三座城市…
一.最小生成树的定义 一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边. 在一个网的所有生成树中,权值总和最小的生成树称为最小代价生成树(Minimum Cost Spanning Tree),简称为最小生成树. 构造最小生成树的准则有以下3条: 只能使用该图中的边构造最小生成树 当且仅当使用n-1条边来连接图中的n个顶点 不能使用产生回路的边 对比两个算法,Kruskal算法主要是针对边来展开,边数少时效率会非常高,所以对于稀疏图有很大的优势:而P…
最小生成树的性质 MST性质:设G = (V,E)是连通带权图,U是V的真子集.如果(u,v)∈E,且u∈U,v∈V-U,且在所有这样的边中, (u,v)的权c[u][v]最小,那么一定存在G的一棵最小生成树,(u,v)为其中一条边. 构造最小生成树,要解决以下两个问题: (1).尽可能选取权值小的边,但不能构成回路(也就是环). (2).选取n-1条恰当的边以连接网的n个顶点. Prim算法的思想: 设G = (V,E)是连通带权图,V = {1,2,…,n}.先任选一点(一般选第一个点),首…
MST在前面学习了Kruskal算法,还有一种算法叫做Prim的.这两者的区别是Prim算法适合稠密图,比如说鸟巢这种几乎所有点都有相连的图.其时间复杂度为O(n^2),其时间复杂度与边的数目无关:而kruskal算法的时间复杂度为O(eloge),跟边的数目有关,适合稀疏图. prim算法 基本思想:假设G=(V,E)是连通的,TE是G上最小生成树中边的集合.算法从U={u0}(u0∈V),TE={ 空集 }开始.重复执行下列操作: 1.在所有u∈U,v∈V-U的边(u,v)∈E中找一条权值最…
1.Prim 算法 以某顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树. 2.Kruskal 算法 直接寻找最小权值的边来构建最小生成树. 比较: Kruskal 算法主要是针对边来展开,边数少时效率会非常高,所以对于稀疏图有很大的优势. Prim 算法针对顶点展开,对于稠密图,即边数非常多的情况下会更好. 具体代码如下: /* Graph.h头文件 */ /*包含图的建立:图的深度优先遍历.图的广度优先遍历*/ /*包含图的最小生成树:Prim 算法.Kruskal 算法*/ #inc…