Pytorch 之 backward】的更多相关文章

首先看这个自动求导的参数: grad_variables:形状与variable一致,对于y.backward(),grad_variables相当于链式法则dz/dx=dz/dy × dy/dx 中的 dz/dy.grad_variables也可以是tensor或序列. retain_graph:反向传播需要缓存一些中间结果,反向传播之后,这些缓存就被清空,可通过指定这个参数不清空缓存,用来多次反向传播. create_graph:对反向传播过程再次构建计算图,可通过backward of b…
导数偏导数的数学定义 参考资料1和2中对导数偏导数的定义都非常明确.导数和偏导数都是函数对自变量而言.从数学定义上讲,求导或者求偏导只有函数对自变量,其余任何情况都是错的.但是很多机器学习的资料和开源库都涉及到标量对向量求导.比如下面这个pytorch的例子. import torch x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True) y = x ** 2 + 2 z = torch.sum(y) z.backward() print(x…
平常都是无脑使用backward,每次看到别人的代码里使用诸如autograd.grad这种方法的时候就有点抵触,今天花了点时间了解了一下原理,写下笔记以供以后参考.以下笔记基于Pytorch1.0 Tensor Pytorch中所有的计算其实都可以回归到Tensor上,所以有必要重新认识一下Tensor.如果我们需要计算某个Tensor的导数,那么我们需要设置其.requires_grad属性为True.为方便说明,在本文中对于这种我们自己定义的变量,我们称之为叶子节点(leaf nodes)…
retain_graph参数的作用 官方定义: retain_graph (bool, optional) – If False, the graph used to compute the grad will be freed. Note that in nearly all cases setting this option to True is not needed and often can be worked around in a much more efficient way. D…
在学习的过程中遇见了一个问题,就是当使用backward()反向传播时传入参数的问题: net.zero_grad() #所有参数的梯度清零 output.backward(Variable(t.ones(1, 10))) #反向传播 这里的backward()中为什么需要传入参数Variable(t.ones(1, 10))呢?没有传入就会报错: RuntimeError: grad can be implicitly created only for scalar outputs 这个错误的…
backward函数 官方定义: torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False, grad_variables=None) Computes the sum of gradients of given tensors w.r.t. graph leaves.The graph is differentiated using the chain rule. If a…
参考自<Pytorch autograd,backward详解>: 1 Tensor Pytorch中所有的计算其实都可以回归到Tensor上,所以有必要重新认识一下Tensor. 如果我们需要计算某个Tensor的导数,那么我们需要设置其.requires_grad属性为True.为方便说明,在本文中对于这种我们自己定义的变量,我们称之为叶子节点(leaf nodes),而基于叶子节点得到的中间或最终变量则可称之为结果节点. 另外一个Tensor中通常会记录如下图中所示的属性: data:…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 torch.autograd就是为了方便用户使用,专门开发的一套自动求导引擎,她能够根据输入和前向传播过程自动构建计算图,并执行反向传播 1.Variable 深度学习算法的本质是通过反向函数求导数,pytorch的Autograd模块实现了此功能.在Tensor上的所有操作,Autograd都能够为他们自动提供微分,避免手动计算的复杂…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 pytorch的设计遵循tensor-> variable(autograd)-> nn.Module三个由低到高的抽象层次,分别代表高维数组(张量).自动求导(变量)和神经网络(层/模块).这三个抽象之间联系紧密,可以同时进行修改和操作 在IPython和Jupyter notebook两个工具中使用了Jupyter noteboo…
TF2.0默认为动态图,即eager模式.意味着TF能像Pytorch一样不用在session中才能输出中间参数值了,那么动态图和静态图毕竟是有区别的,tf2.0也会有写法上的变化.不过值得吐槽的是,tf2.0启动速度仍然比Pytorch慢的多. 操作被记录在磁带中(tape)这是一个关键的变化.在TF0.x到TF1.X时代,操作(operation)被加入到Graph中.但现在,操作会被梯度带记录,我们要做的仅仅是让前向传播和计算损失的过程发生在梯度带的上下文管理器中. with tf.Gra…