[GPU] DIY for Deep Learning Workstation】的更多相关文章

Link: jcjohnson/cnn-benchmarks Ref: Build a super fast deep learning machine for under $1,000 Graphics card/GPU Perhaps the most important attribute to look at for deep learning is the available RAM on the card. If TensorFlow can’t fit the model and…
又是一枚祖国的骚年,阅览做做笔记:http://www.cnblogs.com/neopenx/p/4643705.html 这里只是一些基础知识.帮助理解DL tool的实现. 最新补充:我需要一台DIY的Deep learning workstation. “这也是深度学习带来的一个全新领域,它要求研究者不仅要理论强,建模强,程序设计能力也要过硬,不能纸上谈兵.” CUDA的广泛应用造就了GPU计算专用Tesla GPU的崛起. 随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化…
Who wants to use a free GPU for deep learning?Google Colab is a free cloud service and now it supports free GPU.pictures show you an experimental example that I have done to test this tool and I recommend it.Fast.ai Lesson 1 on Google Colab (Free GPU…
TVM优化Deep Learning GPU算子 高效的深度学习算子是深度学习系统的核心.通常,这些算子很难优化,需要HPC专家付出巨大的努力. 端到端张量IR / DSL堆栈TVM使这一过程变得更加容易. 如何在TVM的帮助下编写高性能GPU运算符内核.本文以深度卷积(即topi.nn.depthwise_conv2d_nchw)为例,并演示如何在tensorflow中改进已经手工优化的CUDA内核.在不同的工作负载下,最终版本比tf-1.2中优化的内核快2到4倍,在启用了算子融合的情况下,最…
转自:http://www.jeremydjacksonphd.com/category/deep-learning/ Deep Learning Resources Posted on May 13, 2015   Videos Deep Learning and Neural Networks with Kevin Duh: course page NY Course by Yann LeCun: 2014 version, 2015 version NIPS 2015 Deep Learn…
In the last chapter we learned that deep neural networks are often much harder to train than shallow neural networks. That's unfortunate, since we have good reason to believe that if we could train deep nets they'd be much more powerful than shallow…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
前言: 当采用无监督的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在网络的可视层(即数据的输入层)引入随机噪声,这种方法称为Denoise Autoencoder(简称dAE),由Bengio在08年提出,见其文章Extracting and composing robust features with denoising autoencoders.使用dAE时,可以用被破坏的输入数据重构出原始的数据(指没被破坏的数据),所以它训练出来的特征会更鲁棒.本篇博文主要是根据Benig…
Top Deep Learning Projects A list of popular github projects related to deep learning (ranked by stars). Last Update: 2016.08.09 Project Name Stars Description TensorFlow 29622              Computation using data flow graphs for scalable machine lear…