数据结构与算法 | 图(Graph)】的更多相关文章

本文参考自<复杂性思考>一书的第二章,并给出这一章节里我的习题解答. (这书不到120页纸,要卖50块!!,一开始以为很厚的样子,拿回来一看,尼玛.....代码很少,给点提示,然后让读者自己思考怎么实现) 先定义顶点和边 class Vertex(object): def __init__(self, label=''): self.label = label def __repr__(self): return 'Vertex(%s)' % repr(self.label) # __repr…
根据维基百科的伪代码实现: 广度优先BFS: 使用队列,集合 标记初始结点已被发现,放入队列 每次循环从队列弹出一个结点 将该节点的所有相连结点放入队列,并标记已被发现 通过队列,将迷宫路口所有的门打开,从一个门进去继续打开里面的门,然后返回前一个门处 """ procedure BFS(G,v) is let Q be a queue Q.enqueue(v) label v as discovered while Q is not empty v ← Q.dequeue(…
使用Floyd-Warshall算法 求图两点之间的最短路径 不允许有负权边,时间复杂度高,思路简单 # 城市地图(字典的字典) # 字典的第1个键为起点城市,第2个键为目标城市其键值为两个城市间的直接距离 # 将不相连点设为INF,方便更新两点之间的最小值 INF = 99999 G = {1:{1:0, 2:2, 3:6, 4:4}, 2:{1:INF, 2:0, 3:3, 4:INF}, 3:{1:7, 2:INF, 3:0, 4:1}, 4:{1:5, 2:INF, 3:12, 4:0}…
# Dijkstra算法——通过边实现松弛 # 指定一个点到其他各顶点的路径——单源最短路径 # 初始化图参数 G = {1:{1:0, 2:1, 3:12}, 2:{2:0, 3:9, 4:3}, 3:{3:0, 5:5}, 4:{3:4, 4:0, 5:13, 6:15}, 5:{5:0, 6:4}, 6:{6:0}} # 每次找到离源点最近的一个顶点,然后以该顶点为重心进行扩展 # 最终的到源点到其余所有点的最短路径 # 一种贪婪算法 def Dijkstra(G,v0,INF=999):…
# Bellman-Ford核心算法 # 对于一个包含n个顶点,m条边的图, 计算源点到任意点的最短距离 # 循环n-1轮,每轮对m条边进行一次松弛操作 # 定理: # 在一个含有n个顶点的图中,任意两点之间的最短路径最多包含n-1条边 # 最短路径肯定是一个不包含回路的简单路径(回路包括正权回路与负权回路) # 1. 如果最短路径中包含正权回路,则去掉这个回路,一定可以得到更短的路径 # 2. 如果最短路径中包含负权回路,则每多走一次这个回路,路径更短,则不存在最短路径 # 因此最短路径肯定是…
一  无向图单源最短路径,Dijkstra算法 计算源点a到图中其他节点的最短距离,是一种贪心算法.利用局部最优,求解全局最优解. 设立一个visited访问和dist距离数组,在初始化后每一次收集一个当前最短的节点cur并将其标记为visited,然后更新这个节点的未被收集临近节点的dist值 [ if ( visited[t] != True && (dis[cur]+ Graph[cur][t]) < dis[t] )  ],直到所有节点被访问.查找dist中的最短路径节点,可…
在复杂的 3D 游戏环境中如何能使非玩家控制角色准确实现自动寻路功能成为了 3D 游戏开 发技术中一大研究热点.其中 A*算法得到了大量的运用,A*算法较之传统的路径规划算法,实时性更高.灵活性更强,寻路 结果更加接近人工选择的路径结果. A*寻路算法并不是找到最优路径,只是找到相对近的路径,因为找最优要把所有可行 路径都找出来进行对比,消耗性能太大,寻路效果只要相对近路径就行了. 1.A* 算法的原理(如显示不全 刷新重试) 我们假设在推箱子游戏中人要从站里的地方移动到右侧的箱子目的地,但是这…
最近忙着准备各种笔试的东西,主要看什么数据结构啊,算法啦,balahbalah啊,以前一直就没看过这些,就挑了本简单的<啊哈算法>入门,不过里面的数据结构和算法都是用C语言写的,而自己对python相对比较熟悉,而且感觉用python实现数据结构相对容易一点.就把这个月来学到的一些,整理一下做个月底总结. 涉及到的书有<啊哈算法>.<复杂性思考>.<数据结构基础(C语言版) 第二版>.<Python Algorithms>,以及其他大牛们的网上教…
图基础 图(Graph)应用广泛,程序中可用邻接表和邻接矩阵表示图.依据不同维度,图可以分为有向图/无向图.有权图/无权图.连通图/非连通图.循环图/非循环图,有向图中的顶点具有入度/出度的概念. 面对图相关问题,第一步是将问题转为用图表示(邻接表/邻接矩阵),二是使用图相关算法求解. 相关LeetCode题: 997. Find the Town Judge  题解 1042. Flower Planting With No Adjacent  题解 图的遍历(DFS/BFS) 图的遍历/搜索…
图.prim算法.dijkstra算法 1. 图的定义 图(Graph)可以简单表示为G=<V, E>,其中V称为顶点(vertex)集合,E称为边(edge)集合.图论中的图(graph)表示的是顶点之间的邻接关系. (1) 无向图(undirect graph)      E中的每条边不带方向,称为无向图.(2) 有向图(direct graph)      E中的每条边具有方向,称为有向图.(3) 混合图       E中的一些边不带方向, 另一些边带有方向.(4) 图的阶      指…