HanLP — 感知机(Perceptron)】的更多相关文章

1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量机(SVM)软间隔 6. 支持向量机(SVM)核函数 1. 前言 今天终于能把感知机的实现补上了,感知机的原理在1. 感知机原理(Perceptron)中已经详尽的介绍,今天就是对感知机的两种实现方式,进行讲解. 2. 感知机实现 2.1 原始形式算法 假设读者们已经了解了感知机的原始形式的原理(不…
感知机(perceptron) 模型: 简答的说由输入空间(特征空间)到输出空间的如下函数: \[f(x)=sign(w\cdot x+b)\] 称为感知机,其中,\(w\)和\(b\)表示的是感知机模型参数,\(w \in R^n\)叫做权值,\(b \in R\)叫做偏置(bias) 感知机是一种线性分类模型属于判别模型. 感知机的几何解释:线性方程:\[w \cdot x + b = 0\]对应于特征空间\(R^n\)中的一个超平面S,这个超平面将特征空间分为两个部分,位于两部分的点(特征…
1 感知机 1.1 感知机定义 感知机是一个二分类的线性分类模型,其生成一个分离超平面将实例的特征向量,输出为+1,-1.导入基于误分类的损失函数,利用梯度下降法对损失函数极小化,从而求得此超平面,该算法有原始形式和对偶形式. 定义:假设输入空间是\(\chi \subseteq \mathbb{R}^n\),输出空间是{+1,-1},输入\(x \in \chi \)表示实例的特征向量,对应于输入空间的点:输出\(y \in Y\)表示实例的类别.则由输入空间到输出空间的如下函数f(x) =…
import numpy as np import matplotlib.pyplot as plt import math def create_data(w1=3,w2=-7,b=4,seed=1,size=30): np.random.seed(seed) w = np.array([w1,w2]) x1 = np.arange(0,size) v = np.random.normal(loc=0,scale=5,size=size) x2 = v - (b+w[0]*x1)/(w[1]*…
 结构化感知机标注框架是一套利用感知机做序列标注任务,并且应用到中文分词.词性标注与命名实体识别这三个问题的完整在线学习框架,该框架利用1个算法解决3个问题,时自治同意的系统,同时三个任务顺序渐进,构成流水线式的系统.本文先介绍中文分词框架部分内容. 中文分词 训练 只需指定输入语料的路径(单文档时为文件路径,多文档时为文件夹路径,灵活处理),以及模型保存位置即可: 命令行 java -cp hanlp.jar com.hankcs.hanlp.model.perceptron.Main -ta…
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量机(SVM)软间隔 6. 支持向量机(SVM)核函数 1. 前言 感知机是1957年,由Rosenblatt提出会,是神经网络和支持向量机的基础. 2. 感知机的原理 感知机是二分类的线性模型,其输入是实例的特征向量,输出的是事例的类别,分别是+1和-1,属于判别模型. 假设训练数据集是线性可分的,…
最小二乘线性回归,感知机,逻辑回归的比较:   最小二乘线性回归 Least Squares Linear Regression 感知机 Perceptron 二分类逻辑回归 Binary Logistic Regression 多分类逻辑回归 Multinomial Logistic Regression 特征x x=([x1,x2,...,xn,1])T 权重w w=([w1,w2,...,wn,b])T 目标y 实数(负无穷大到正无穷大) 两个类别 1,-1 两个类别 0,1 多个类别 c…
HanLP的Python接口,支持自动下载与升级HanLP,兼容py2.py3. 安装 pip install pyhanlp 使用命令hanlp来验证安装,如因网络等原因自动安装失败,可参考手动配置或Windows指南. 命令行 中文分词 使用命令hanlp segment进入交互分词模式,输入一个句子并回车,HanLP会输出分词结果: $ hanlp segment 商品和服务 商品/n 和/cc 服务/vn 当下雨天地面积水分外严重 当/p 下雨天/n 地面/n 积水/n 分外/d 严重/…
本章是接前两篇<分词工具Hanlp基于感知机的中文分词框架>和<基于结构化感知机的词性标注与命名实体识别框架>的.本系统将同时进行中文分词.词性标注与命名实体识别3个任务的子系统称为“词法分析器”. 加载 对应的类为PerceptronLexicalAnalyzer,其构造方法为递增的3个模型地址: l public PerceptronLexicalAnalyzer(String cwsModelFile) throws IOException l public Perceptr…