背景 ClickHouse 作为开源 OLAP 引擎,因其出色的性能表现在大数据生态中得到了广泛的应用.区别于 Hadoop 生态组件通常依赖 HDFS 作为底层的数据存储,ClickHouse 使用本地盘来自己管理数据,官方推荐使用 SSD 作为存储介质来提升性能.但受限于本地盘的容量上限以及 SSD 盘的价格,用户很难在容量.成本和性能这三者之间找到一个好的平衡.JuiceFS 的某个客户近期就遇到了这样的难题,希望将 ClickHouse 中的温冷数据从 SSD 盘迁移到更大容量.更低成本…
Hadoop 的诞生改变了企业对数据的存储.处理和分析的过程,加速了大数据的发展,受到广泛的应用,给整个行业带来了变革意义的改变:随着云计算时代的到来, 存算分离的架构受到青睐,企业开开始对 Hadoop 的架构进行改造. 今天与大家一起简单回顾 Hadoop 架构以及目前市面上不同的存算分离的架构方案,他们的利弊各有哪些,希望可以给正在存算分离架构改造的企业一些参考和启发. Hadoop 存算耦合架构回顾 2006 年 Hadoop 刚发布,这是一个 all-in-one 的套装,最早有三个核…
​引言 随着大数据技术架构的演进,存储与计算分离的架构能更好的满足用户对降低数据存储成本,按需调度计算资源的诉求,正在成为越来越多人的选择.相较 HDFS,数据存储在对象存储上可以节约存储成本,但与此同时,对象存储对海量文件的写性能也会差很多. 腾讯云弹性 MapReduce(EMR) 是腾讯云的一个云端托管的弹性开源泛 Hadoop 服务,支持 Spark.Hbase.Presto.Flink.Druid 等大数据框架. 近期,在支持一位 EMR 客户时,遇到典型的存储计算分离应用场景.客户使…
01- 大数据运营的挑战 & 升级思考 大数据运营面临的挑战 中国电信大数据集群每日数据量庞大,单个业务单日量级可达到 PB 级别,且存在大量过期数据(冷数据).冗余数据,存储压力大:每个省公司都有自己的集群,以及多个收集全国各省级业务信息的集团大数据集群,导致数据分散冗余,省集群与集团集群数据无法共享,跨地域任务延迟高. 电信早在 2012 年就开始创建各种集群,内部集群由各个厂商或其他内部团队部署,承载的业务由各个厂商运营,运维团队也是由各个厂商提供,因此集群涉及的版本非常多,包括 Apac…
随着网络性能提升,云端计算架构逐步向存算分离转变,AWS Aurora 率先在数据库领域实现了这个转变,大数据计算领域也迅速朝此方向演化. 存算分离在云端有明显优势,不但可以充分发挥弹性计算的灵活,同时集中的托管存储可以提供更大的容量和更低的成本,避免了云端大量自建存储集群的维护代价. 一.问题和挑战 对象存储是广泛使用的云端非结构化数据存储解决方案,越来越多的非结构化数据聚集于对象存储的数据湖中,随之而来的是对这些海量数据的分析需求. 然而对大数据分析的存储系统来说,HDFS 接口是事实标准,…
ByteHouse云数仓版是字节跳动数据平台团队在复用开源 ClickHouse runtime 的基础上,基于云原生架构重构设计,并新增和优化了大量功能.在字节内部,ByteHouse被广泛用于各类实时分析领域,最大的一个集群规模大于2400节点,管理的总数据量超过700PB.本分享将介绍ByteHouse云原生版的整体架构,并重点介绍ByteHouse在查询上的优化(如优化器.MPP执行模式.调度优化等)和对MySQL生态的完善(基于社区MaterializedMySQL功能),最后结合实际…
本文目录: 一.数据流向 二.应用示例 三.何为数仓DW 四.为何要分层 五.数据分层 六.数据集市 七.问题总结 导读 数仓在建设过程中,对数据的组织管理上,不仅要根据业务进行纵向的主题域划分,还需要横向的数仓分层规范.本文作者围绕企业数仓分层展开分析,希望对你有帮助. 因文章太长,本文不是完结版,文末可获取完整PDF版 从事数仓相关工作的人员都知道数仓模型设计的首要工作之一就是进行模型分层,可见模型分层在模型设计过程中的重要性,确实优秀的分层设计是一个数仓项目能否建设成功的核心要素,让数据易…
作者:京东云 贾世闻 最近想看看 rust 如何集成 clickhouse,又犯了好吃懒做的心理(不想自己建环境),刚好京东云发布了兼容ck 的云原生数仓 Starwfit,于是搞了个实例折腾一番. Starwfit 是京东云自主研发的新一代云原生数据仓库,通过存算分离降低了存储成本,同时兼具性能和扩展弹性.其写入和查询速度可达到传统数据仓库的数倍,为用户提供实时数据分析能力.广泛应用于流量分析.精准营销.用户画像.广告实时竞价.BI报表分析.日志分析.促销选品.物联网等业务场景. 言归正传,看…
数据仓库系列文章(持续更新) 数仓架构发展史 数仓建模方法论 数仓建模分层理论 数仓建模-宽表的设计 数仓建模-指标体系 数据仓库之拉链表 数仓-数据集成 数仓-数据集市 数仓-商业智能系统 数仓-埋点设计与管理 数仓-ID Mapping 数仓-OneID 数仓-AARRR海盗模型 数仓-总线矩阵 数仓-数据安全 数仓-数据质量 数仓-数仓建模和业务建模 工欲善其事,必先利其器,所以开始数仓建模之前我们还是要选择一个合适的建模工具,江湖上混怎么能没有一个响亮的名号和趁手的武器呢,PDMan就是…
一.ODS层 1.保持数据原貌,不做任何修改 2.数据压缩:LZO压缩,减少磁盘空间 3.创建的是分区表:可以防止后续的全表扫描 包括 用户行为:string line dt    ods_start: ods_event(商品列表.商品详情.点击         广告 点赞.评论.收藏      -- ) 业务数据:8张表(用户.支付.订单表.订单详情.商品表.商品一二三级分类--) 二.DWD层 1.ETL对数据的核心字段进行清洗[去重.去空] 2.ETL工具是什么 hive的hql spa…