「CSP-S 2019」划分】的更多相关文章

description loj 3212 solution 首先容易想到\(n^3\)DP,即令\(f_{i,j}\)表示前\(i\)个数的划分,其中最后一段是从\(j\)开始时的答案 于是有 \[f_{i,j}=max(f_{j-1,k}+(s_i-s_{j-1})^2) \] 其中\(s_i\)是前缀和,且\(k<j,s_i-s_{j-1} \ge s_{j-1}-s{k}\) 考虑优化,可以发现对于同一个\(i\)的\(j_1<j_2\),不满足\(j_1\)条件的\(k\)也不会满足\…
题目描述 定义两个函数 \(f, g: \{1, 2, \dots, n\} \rightarrow \mathbb Z\) 的狄利克雷卷积 \(f * g\) 为: \[ (f * g)(n) = \sum_{d | n} f(d)g(\frac nd) \] 我们定义 \(g = f^k\) 即 \(k\) 次幂为: \[ f^{k}=\underbrace {f * \dots * f} _{k~{\textrm {个}}} \] 在本题中,我们想要解决这个问题的逆问题:给你 \(g\)…
题面 LOJ 3153 solution 对于任意一对\(A,B\),若区间\([A,B]\)中存在一个数权值大于\(A\)或\(B\),则用这个数来替代\(A\)或\(B\)显然更优. 故只需要考虑每一个区间的最大值与次大值分别作为\(A,B\). 可以用单调栈\(O(n)\)找到每一对这样的\(A,B\). 考虑\(f[i]\)表示以\(i\)作为\(C\)时最大的\(A+B+C\),对于每一对\(A,B\),他们对应的\(C\)一定\(\ge (2*B-A)\). 离线处理询问,从大到小枚…
#3146. 「APIO 2019」路灯 题目描述 一辆自动驾驶的出租车正在 Innopolis 的街道上行驶.该街道上有 \(n + 1\) 个停车站点,它们将街道划分成了 \(n\) 条路段.每一路段都拥有一个路灯.当第 \(i\) 个路灯亮起,它将照亮连接第 \(i\) 与第 \(i + 1\) 个站点的路段.否则这条路段将是黑暗的. 安全起见,出租车只能在被照亮的路段上行驶.换言之,出租车能从站点 \(a\) 出发到达站点 \(b\ (a < b)\) 的条件是:连接站点 \(a\) 与…
「CSP-S模拟赛」2019第四场 T1 「JOI 2014 Final」JOI 徽章 题目 考场思考(正解) T2 「JOI 2015 Final」分蛋糕 2 题目 考场思考(正解) T3 「CQOI2014」数三角形 题目 考场思考 正解 这场考试还是同一个感觉:听音乐误事啊- 把 T1.T2T1.T2T1.T2 码出来之后,听音乐听到不想做题,但是 T3T3T3 又是一个注重思考的题-然后,我暴力都没码出来. 其实这次题的 T3T3T3 还是可做的,下次 好像就是 CSP 了 不要那么浪了…
「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 2019」异或粽子 「十二省联考 2019」字符串问题 「十二省联考 2019」春节十二响…
「WC 2019」数树 一道涨姿势的EGF好题,官方题解我并没有完全看懂,尝试用指数型生成函数和组合意义的角度推了一波.考场上只得了 44 分也暴露了我在数数的一些基本套路上的不足,后面的 \(\exp\) 是真的神仙,做不出来当然很正常,而且我当时也不怎么会多项式. Task0 考虑公共边组成 \(k\) 个联通块,答案就是 \(y^k\) ,并查集维护一下即可,复杂度 \(\mathcal O(n\log n)\) . code namespace task0{ map<pair<int,…
「长乐集训 2017 Day10」划分序列 题目描述 给定一个长度为 n nn 的序列 Ai A_iA​i​​,现在要求把这个序列分成恰好 K KK 段,(每一段是一个连续子序列,且每个元素恰好属于一段),并且每段至少有一个元素,使得和最大的那一段最小. 请你求出这个最小值. 输入格式 第一行两个整数 n,K n, Kn,K,意义见题目描述.接下来一行 n nn 个整数表示序列 Ai A_iA​i​​. 输出格式 仅一行一个整数表示答案. 样例 样例输入 9 4 1 1 1 3 2 2 1 3…
LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想到先枚举这个\(D\),然后极角序排一下,我们枚举\(A\),对\(B,E,F\)分别统计. 枚举\(A\)的过程中用一个指针维护\(E,F\)的范围,对答案贡献是一个\(\sum\binom{x}{2}\)的形式,容易维护. 然后现在要求\(B\)的方案数,可以发现符合条件的\(BC\)一定满足线段\(…
LOJ #3049. 「十二省联考 2019」字符串问题 https://loj.ac/problem/3049 题意:给你\(na\)个\(A\)类串,\(nb\)个\(B\)类串,\(m\)组支配关系,求一个长度很长的串\(t_1t_2...t_k\)满足 \(t_i\)为\(A\)类串,\(t_i\)能支配一个\(B\)类串,使得该\(B\)类串为\(t_{i+1}\)的前缀. 分析: 一个简单的暴力就是枚举\(A_i\)后面能接的\(A_j\)进行连边,然后拓扑序求一下最长路. 很难优化…