1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2.LSTM(Long Short Term Memory)长短期记忆神经网络模型 详见LSTM长短期记忆神经网络:http://www.cnblogs.com/pinard/p/6519110.html   3.LSTM长短期记忆神经网络处理Mnist数据集 import tensorflow as…
1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2.LSTM(Long Short Term Memory)长短期记忆神经网络模型 详见LSTM长短期记忆神经网络:http://www.cnblogs.com/pinard/p/6519110.html   3.LSTM长短期记忆神经网络处理Mnist数据集 1 2 3 4 5 6 7 8 9 10…
from __future__ import print_function from tensorflow.examples.tutorials.mnist import input_data #加载数据集 mnist = input_data.read_data_sets(r"C:/Users/HPBY/tem/data/",one_hot=True)#加载本地数据 以独热编码形式 import tensorflow as tf #设置超参 learning_rate = 0.01…
首先是不含隐层的神经网络, 输入层是784个神经元 输出层是10个神经元 代码如下 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data", one_hot=True) #每个批次的大小 batch_size = 100 #计算一共有多少个批次…
CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积:感受视野5*5,步长为1,卷积核:64个 第二层池化:池化视野2*2,步长为2 全连接层:设置1024个神经元 输出层:0~9十个数字类别   代码实现: import tensorflow as tf #Tensorflow提供了一个类来处理MNIST数据 from tensorflow.exa…
title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] categories: ["python"] 前言 训练时读入的是.mat格式的训练集,测试正确率时用的是png格式的图片 代码 #!/usr/bin/env python3 # coding=utf-8 import math import sys import os import numpy…
一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度跟激活函数的梯度成正比(即激活函数的梯度越大,w和b的大小调整的越快,训练速度也越快) 3. 激活函数是sigmoid函数时,二次代价函数调整参数过程分析 理想调整参数状态:距离目标点远时,梯度大,参数调整较快:距离目标点近时,梯度小,参数调整较慢.如果我的目标点是调整到M点,从A点==>B点的调整…
LSTM 是 long-short term memory 的简称, 中文叫做 长短期记忆. 是当下最流行的 RNN 形式之一 RNN 的弊端 RNN没有长久的记忆,比如一个句子太长时开头部分可能会忘记,从而给出错误的答案. 时间远的记忆要进过长途跋涉才能抵达最后一个时间点. 然后我们得到误差, 而且在 反向传递 得到的误差的时候, 他在每一步都会 乘以一个自己的参数 W. 如果这个 W 是一个小于1 的数, 比如0.9. 这个0.9 不断乘以误差, 误差传到初始时间点也会是一个接近于零的数,…
循环神经网络(RNN) 人们不是每一秒都从头开始思考,就像你阅读本文时,不会从头去重新学习一个文字,人类的思维是有持续性的.传统的卷积神经网络没有记忆,不能解决这一个问题,循环神经网络(Recurrent Neural Networks)可以解决这一个问题,在循环神经网络中,通过循环可以解决没有记忆的问题,如下图: 看到这里,你可能还是不理解为什循环神经网络就可以有记忆.我们把这个图展开: 可以看出,我们输入 \(X_0\) 后,首先警告训练,得到输出 \(h_0\),同时会把这个输出传递给下一…
#coding:utf-8 import tensorflow as tf from PIL import Image,ImageFilter from tensorflow.examples.tutorials.mnist import input_data def imageprepare(argv): # 该函数读一张图片,处理后返回一个数组,进到网络中预测 """ This function returns the pixel values. The imput is…