【MapReduce】二、MapReduce编程模型】的更多相关文章

1 思路:0.txt MapReduce is simple1.txt MapReduce is powerfull is simple2.txt Hello MapReduce bye MapReduce 1 map函数:context.write(word:docid, 1) 即将word:docid作为map函数的输出输出key 输出valueMapReduce:0.txt 1is:0.txt 1simple:0.txt 1Mapreduce:1.txt 1is:1.txt 1powerf…
  通过前面的实例,可以基本了解MapReduce对于少量输入数据是如何工作的,但是MapReduce主要用于面向大规模数据集的并行计算.所以,还需要重点了解MapReduce的并行编程模型和运行机制.   我们知道,MapReduce计算模型主要由三个阶段构成:Map.shuffle.Reduce.Map和Reduce操作需要我们自己定义相应Map类和Reduce类.而shuffle则是系统自动帮我们实现的,是MapReduce的"心脏",是奇迹发生的地方.是其主要流程基本如下图所示…
一.简单介绍 1.MapReduce 应用广泛的原因之中的一个在于它的易用性.它提供了一个因高度抽象化而变得异常简单的编程模型. 2.从MapReduce 自身的命名特点能够看出,MapReduce 由两个阶段组成:Map 和Reduce .用户仅仅需编写map( ) 和reduce( ) 两个函数,就可以完毕简单的分布式程序的设计.   1)map ( ) 函数以key/value 对作为输入,产生另外一系列key/value 对作为中间输出写入本地磁盘.MapReduce 框架会自己主动将这…
批处理引擎MapReduce编程模型 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. MapReduce是一个经典的分布式批处理计算引擎,被广泛应用于搜索引擎索引构建,大规模数据处理等场景中,具有易于编程,良好的扩展性与容错性以及高吞吐率等特点.它主要由两部分组成:编程模型和运行时环境.其中编程模型为用户提供了非常易用的编程接口,用户只需像编写串行程序一样实现几个简单的函数即可实现一个分布式程序,而其他比较复杂的工作,如节点间的通信,节点失效,数据切分等,全部由MapReduc…
上次新霸哥给大家介绍了一些hadoop的相关知识,发现大家对hadoop有了一定的了解,但是还有很多的朋友对mapreduce很模糊,下面新霸哥将带你共同学习mapreduce编程模型. mapreduce编程模型可以利用大量的商用服务器构成大规模集群来解决处理千兆级别的数据量问题.mapreduce编程模型有两个比较独立的步骤,分别是map和reduce map:比较常见的就是数据初始读取和转换的步骤,同时在这个步骤中,每个独立的输入数据记录都进行并行处理. Reduce: 一个数据整合或者加…
传统的串行处理方式 有四组文本数据: "the weather is good", "today is good", "good weather is good", "today has good weather" 对这些文本数据进行词频统计: import java.util.Hashtable; import java.util.Iterator; import java.util.StringTokenizer; /**…
本文基于Windows平台Eclipse,以使用MapReduce编程模型统计文本文件中相同单词的个数来详述了整个编程流程及需要注意的地方.不当之处还请留言指出. 前期准备 hadoop集群的搭建 编程环境搭建 1.将官网下载的hadoop安装包解压,并记住下图所示的目录 2.创建java project,右键工程--->build path--->Configure build path 3.进行如下图操作 4.新建MapReduce编程要使用的环境包,如下图操作 5.将下图所示的commo…
MapReduce应用广泛的原因之一就是其易用性,提供了一个高度抽象化而变得非常简单的编程模型,它是在总结大量应用的共同特点的基础上抽象出来的分布式计算框架,在其编程模型中,任务可以被分解成相互独立的子问题.MapReduce编程模型给出了分布式编程方法的5个步骤: 迭代,遍历输入数据,将其解析成key/value对: 将输入key/value对映射map成另外一些key/value对: 根据key对中间结果进行分组(grouping): 以组为单位对数据进行归约: 迭代,将最终产生的key/v…
分布式并行编程用于解决大规模数据的高效处理问题.分布式程序运行在大规模计算机集群上,集群中计算机并行执行大规模数据处理任务,从而获得海量计算能力. MapReduce是一种并行编程模型,用于大规模数据集的并行运算,那么MapReduce又是如何进行并行编程的呢? MapReduce采用“分而治之”的策略,将存储在分布式文件系统的大数据集切分成独立小数据块(即Split,分片),这些分片可以被多个Map任务并行处理.MapReduce强调“计算向数据靠拢”而非“数据向计算靠拢”,传统模式下,对数据…
Hadoop集群_WordCount运行详解--MapReduce编程模型 下面这篇文章写得非常好,有利于初学mapreduce的入门 http://www.nosqldb.cn/1369099810935.html…