Atcoder 题面传送门 & 洛谷题面传送门 u1s1 Atcoder 不少思维题是真的想不出来,尽管在 Atcoder 上难度并不高 二分答案(这我倒是想到了),检验最上面一层的数是否 \(\ge x\). 我们将最底下一层的数中 \(\ge x\) 的 \(a_i\) 设为 \(1\),\(<x\) 的设为 \(0\),那么原题可以转化为每次操作对于相邻三个数,如果 \(1\) 的个数 \(\ge 2\),就在该位上填一个 \(1\),否则在该位上填一个 \(0\),求最终顶上的数是…
AtCoder Grand Contest 006 吐槽 这套题要改个名字,叫神仙结论题大赛 A - Prefix and Suffix 翻译 给定两个串,求满足前缀是\(S\),后缀是\(T\),并且长度至少为\(n\)的最短串串长. 题解 暴力枚举\(S\)和\(T\)的重叠部分长度,然后直接\(check\) #include<iostream> #include<cstdio> #include<cstring> using namespace std; #de…
AtCoder Grand Contest 019 B - Reverse and Compare 题意:给定字符串,可以选定任意i.j且i<=j(当然i==j时没啥卵用),然后翻转i到j的字符串,问能组成多少种不同的字符串. tourist出的题..感觉好棒,虽然简单,但我就是不知道怎么弄,感觉思维好匮乏. 首先,如果Si=Sj,那么反转i到j和翻转i+1到j-1是一样的,也就是这种翻转不会贡献更多的答案.那么其实只要求i<j且Si!=Sj的个数就行了,当然,本身不变也是一种答案.求解i&l…
题目传送门:https://agc006.contest.atcoder.jp/tasks/agc006_c 题目翻译 数轴上有\(N\)只兔子,从\(1\)到\(N\)编号,每只兔子初始位置是\(x_i\).现在兔子们要开始做运动,运动都有\(M\)个步骤,对于第\(i\)个步骤,我们用\(a_i\)来形容它,意思是: 在当前步骤中,从左至右数第\(a_i\)只兔子将会跳跃.我们在\(a_i-1\)和\(a_i+1\)两只兔子中等概率的选择一个兔子,假设我们选择的是\(x\),那么第\(a_i…
Atcoder 题面传送门 & 洛谷题面传送门 首先考虑对于固定的 01 串怎样计算它是否可以通过将三个连续的 \(0\) 或 \(1\) 替换为其中位数得到.我们考虑单调栈,新建一个栈,栈底到栈顶分别是一段连续的 \(1\) 和一段连续的 \(0\),分别表示当前未合并完的字符,我们从左往右扫描,每遇到一个字符可分以下两种情况: 如果我们遇到一个 \(0\): 如果栈为空,那直接将这个 \(0\) 入栈就好了. 如果栈顶 \(0\) 的个数 \(\ge 2\),那么显然我们可以把三个连续的 \…
原文链接https://www.cnblogs.com/zhouzhendong/p/AGC006C.html 题目传送门 - AGC006C 题意 有 $n$ 个兔子,从 $1$ 到 $n$ 编号,第 $i$ 个兔子的初始位置为 $x_i$ ,有 $K$ 次操作,每次操作分 $m$ 步,其中第 $j$ 步用一个数 $a_j$ 描述,这一步的效果是:等概率在 $a_j-1$ 和 $a_j +1$ 中选择一个(假设选择的那个是 $x$),并让兔子 $a_j$ 跳到以兔子 $x$ 为对称中心时,兔子…
Description 在 \(n*n\) 的棋盘上给出 \(m\) 个黑点,若 \((x,y)\),\((y,z)\) 都是黑点,那么 \((z,x)\) 也会变成黑点,求最后黑点的数量 题面 Solution 把点 \((x,y)\) 看作一条从 \(x\) 到 \(y\) 的有向边 我们分析性质: 如果存在一个自环,那么这个点所在的连通块就会变成一个完全图 原因是和这个点有单向边的点都会变成双向边,有双向边之后就会形成自环,那么就可以一直重复这个过程,就变成了完全图 我们想办法判断图中有没…
题面 传送门 思路 首先,这个涂黑的方法我们来优化一下模型(毕竟当前这个放到矩形里面,你并看不出来什么规律qwq) 我们令每个行/列编号为一个点,令边(x,y)表示一条从x到y的有向边 那么显然只要有一条长度为2的路径,就会得到一个三元环 我们考虑如何统计新加入的边的数量,发现有如下规律: 1.如果一个弱联通块中的点可以被3染色(0的出边染成1,1的染成2,2的染成0,倒着染就是反过来),那么这个联通块中所有0会向所有1连边,所有1会向所有2连边,所有2会向0连边 2.如果一个弱联通块染色的时候…
传送门 \(A\) 咕咕 const int N=105; char s[N],t[N];int n; inline bool eq(R int k){fp(i,1,k)if(s[n-k+i]!=t[i])return false;return true;} int main(){ scanf("%d%s%s",&n,s+1,t+1); fd(k,n,0)if(eq(k))return printf("%d\n",(n<<1)-k),0; ret…
洛谷题面传送门 & Atcoder 题面传送门 记先手移动棋子的树为红树,后手移动棋子的树为蓝树. 首先考虑一个性质,就是如果与当前红色棋子所在的点相连的边中存在一条边,满足这条边的两个端点在蓝树上的距离 \(\ge 3\),那么答案肯定是 \(-1\),因为如果此时红色棋子与蓝色棋子在蓝树上的距离 \(\le 1\),那么先手就可以沿着这条红边将红色棋子移到该边的另一个端点,使红色棋子与蓝色棋子在蓝树上的距离 \(>1\),否则原地不动.如果后手再次将蓝色棋子移到与红色棋子在蓝树上距离为…