在上一集的讨论里我们介绍并实现了强类型返回结果行.使用强类型主要的目的是当我们把后端数据库SQL批次操作搬到内存里转变成数据流式按行操作时能更方便.准确.高效地选定数据字段.在上集讨论示范里我们用集合的foreach方式模拟了一个最简单的数据流,并把从数据库里批次读取的数据集转换成一串连续的数据行来逐行使用.一般来说完整的流式数据处理流程包括了从数据库中读取数据.根据读取的每行数据状态再对后台数据库进行更新,包括:插入新数据.更新.删除等.那么在上篇中实现的流式操作基础上再添加一种指令行类型就可…
原文链接:Spark Streaming:大规模流式数据处理的新贵 摘要:Spark Streaming是大规模流式数据处理的新贵,将流式计算分解成一系列短小的批处理作业.本文阐释了Spark Streaming的架构及编程模型,并结合实践对其核心技术进行了深入的剖析,给出了具体的应用场景及优化方案. 提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处…
转自:http://www.csdn.net/article/2014-01-28/2818282-Spark-Streaming-big-data 提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处理可以分为如以下三个类型. 复杂的批量数据处理(batch data processing),通常的时间跨度在数十分钟到数小时之间. 基于历史数据的交互式…
相当长一段时间以来,大数据社区已经普遍认识到了批量数据处理的不足.很多应用都对实时查询和流式处理产生了迫切需求.最近几年,在这个理念的推动下,催生出了一系列解决方案,Twitter Storm,Yahoo S4,Cloudera Impala,Apache Spark和Apache Tez纷纷加入大数据和NoSQL阵营.本文尝试探讨流式处理系统用到的技术,分析它们与大规模批量处理和OLTP/OLAP数据库的关系,并探索一个统一的查询引擎如何才能同时支持流式.批量和OLAP处理. 在Grid Dy…
背景 字节跳动开发套件数据集成团队(DTS ,Data Transmission Service)在字节跳动内基于 Flink 实现了流批一体的数据集成服务.其中一个典型场景是 Kafka/ByteMQ/RocketMQ -> HDFS/Hive .Kafka/ByteMQ/RocketMQ -> HDFS/Hive(下面均称之为 MQ dump,具体介绍可见 字节跳动基于Flink的MQ-Hive实时数据集成 ) 在数仓建设第一层,对数据的准确性和实时性要求比较高.​ 目前字节跳动中国区 M…
对于MapReduce等框架来说,需要有一套更底层的API来获取某个指定文件中的一部分数据,而不是一整个文件 因此使用流的方式来操作 HDFS上的文件,可以实现读取指定偏移量范围的数据 1.客户端测试类代码: package cn.bigdata.hdfs; import java.io.IOException; import java.net.URI; import java.net.URISyntaxException; import org.apache.hadoop.conf.Confi…
http://www.cnblogs.com/panfeng412/archive/2012/07/29/storm-stream-model-analysis-and-discussion.html http://www.baidu.com/link?url=Qm-gkOu7f148O181TS0GMoUQkytD45sIRw5cehjNefXNHt2yGZljGQ3Z2Ci-ufG1goUBonh7rlPN6igdTYoTOq&wd=kafka%20storm&ie=utf-8&…
因为当时公司的业务需要对集合进行各种各样的业务逻辑操作,为了提高性能,就用到了这个东西,因为以往我们以前用集合都是需要去遍历(串行),所以效率和性能都不是特别的好,而Streams就可以使用并行的方式来操作集合. Stream 就如同一个迭代器(Iterator),单向,不可往复,数据只能遍历一次,遍历过一次后即用尽了,就好比流水从面前流过,一去不复返. 而和迭代器又不同的是,Stream 可以并行化操作,迭代器只能命令式地.串行化操作.顾名思义,当使用串行方式去遍历时,每个 item 读完后再…
SparkStreaming Spark Streaming类似于Apache Storm,用于流式数据的处理.Spark Streaming有高吞吐量和容错能力强等特点.Spark Streaming支持的数据源有很多,例如:Kafka.Flume.Twitter.ZeroMQ和简单的TCP套接字等等.数据输入后可以用Spark的高度抽象操作如:map.reduce.join.window等进行运算.而结果也能保存在很多地方,如HDFS,数据库等. 特性 1.易用性 可以像编写离线批处理一样去…
一.前言 java 中MySQL JDBC 封装了流式查询操作,通过设置几个参数,就可以避免一次返回数据过大导致 OOM. 二.如何使用 2.1 之前查询 public void selectData(String sqlCmd) throws SQLException { validate(sqlCmd); Connection conn = null; PreparedStatement stmt = null; ResultSet rs = null; try { conn = petad…