Spark Streaming揭秘 Day9 从Receiver的设计到Spark框架的扩展 Receiver是SparkStreaming的输入数据来源,从对Receiver整个生命周期的设计,我们可以充分领略到Spark框架设计之巧妙,废话少说,让我们来看代码. 解决的问题 在开始之前,让我们先明确一个概念,就是Receiver于inputDStream之间的关系,从如下代码中,我们可以看到,receiver其实是由inputDStream映射得到的,也就是说Receiver和inputDS…
Spark Streaming揭秘 Day19 架构设计和运行机制 今天主要讨论一些SparkStreaming设计的关键点,也算做个小结. DStream设计 首先我们可以进行一个简单的理解:DStream就是加上时间维度的RDD.RDD的模板是DStream,DAG的模板是DStreamGraph,RDD的依赖关系就是DStream的依赖关系. 但是,从DStream的设计来看,我们会发现,DStream的操作和RDD并不是一一对应的,DStream并不直接支持join.orderBy等操作…
Spark Streaming揭秘 Day11 Receiver Tracker的具体实现 ReceiverTracker是运行在Driver上Receiver管理程序,今天让我们深入学习一下. 核心:ReceivedBlockTracker 通过阅读代码,我们会发现ReceiverTracker中最为重要的是其中的成员ReceivedBlockTracker,主要存放实际的Block数据,这是一个典型的facade模式的实现. 数据结构:两个Map 在ReceivedBlockTracker中…
Spark Streaming揭秘 Day33 checkpoint的使用 今天谈下sparkstreaming中,另外一个至关重要的内容Checkpoint. 首先,我们会看下checkpoint的使用.另外,会看下在应用程序重新启动时,是如何处理checkpoint的. Checkpoint保存什么 checkpoint作为容错的设计,基本思路是把当前运行的状态,保存在容错的存储系统中(一般是hdfs).对于容错的处理,肯定是围绕作业紧密相关的,保存内容包括元数据和数据两部分. 从元数据角度…
Spark Streaming揭秘 Day32 WAL框架及实现 今天会聚焦于SparkStreaming中非常重要的数据安全机制WAL(预写日志). 设计要点 从本质点说,WAL框架是一个存储系统,可以简单的认为是一个文件系统,其作用类似于BlockManager, 我们首先看一下官方的说明: 这里有三个要点: 总体上,sparksteaming是用WAL去保存接收到的数据,并且在写入数据后,要把元数据汇报给Driver,这样失败了才能恢复起来. 每当写入一个log,就返回一个handle,h…
Spark Streaming揭秘 Day30 集群模式下SparkStreaming日志分析 今天通过集群运行模式观察.研究和透彻的刨析SparkStreaming的日志和web监控台. Day28已经分析过local模式下的日志,集群模式会比较类似,这次主要是对集群模式在的web监控台,进行统一的深度刨析. 我们从wordcount程序开始,代码如下,为了展示出SparkStreaming在集群中的运行,Batch Duration设置为5分钟. 系统作业 为了观察持续运行的情况,我们运行了…
Spark Streaming揭秘 Day29 深入理解Spark2.x中的Structured Streaming 在Spark2.x中,Spark Streaming获得了比较全面的升级,称为Structured Streaming,和之前的很不同,功能更强大,效率更高,跟其他的组件整合性也更好. 连续应用程序continuous application 首先,也是最重要的,在2.x中,提出了一个叫做continuous applications连续应用程序的概念. 如下图所示,数据从Kaf…
Spark Streaming揭秘 Day28 在集成开发环境中详解Spark Streaming的运行日志内幕 今天会逐行解析一下SparkStreaming运行的日志,运行的是WordCountOnline这个Demo. 启动过程 SparkStreaming启动是从如下日志开始: 16/06/16 21:26:44 INFO ReceiverTracker: Starting 1 receivers 16/06/16 21:26:44 INFO ReceiverTracker: Recei…
Spark Streaming揭秘 Day24 Transformation和action图解 今天我们进入SparkStreaming的数据处理,谈一下两个重要的操作Transfromation和action背后的故事. InputReceiver 根据前面的课程,我们知道Transformation是逻辑级别的状态转换,并没有真的发生. 让我们从第一个Transformation,也就是SocketTextStream开始. 这里需要注意的是,这里返回的是字符串类型,这个是通过convert…
Spark Streaming揭秘 Day20 动态Batch size实现初探(上) 今天开始,主要是通过对动态Batch size调整的论文的解析,来进一步了解SparkStreaming的处理机制,因为比较偏理论,么有代码演示. 缘起 从目前的业务发展来看,线上处理目前来看已经越来越重要,而一个突出的矛盾就是,传统框架Oracle+j2ee的框架下,存在一个致命的问题,就是无法突破单台机器的局限,可能容纳此刻流入的数据,于是分布式流处理程序越来越火热. 流处理的核心是追求更快的处理速度.但…