Spark Tungsten揭秘 Day4 内存和CPU优化使用 今天聚焦于内存和CPU的优化使用,这是Spark2.0提供的关于执行时的非常大的优化部分. 对过去的代码研究,我们会发现,抽象的提高,转过来会变成对CPU和内存的使用.也就是说,抽象提升,会对内存对Cpu会有很多不必要的使用,执行很多无谓的没有实际作用的操作.比如面向接口调用,就是使用了指针的指针,接口这层并没有实际的作用,可以直接跳过. whole-stage code Spark2.x的Tungsten中做了个非常重要的改进,…
Spark Tungsten揭秘 Day3 内存分配和管理内幕 恭喜Spark2.0发布,今天会看一下2.0的源码. 今天会讲下Tungsten内存分配和管理的内幕.Tungsten想要工作,要有数据源和数据结构,这时候会涉及到内存管理,而内存管理也是后续做很多分析和逻辑控制的基础. 内存分配 我们从内存分配的入口MemoryAllocator开始: allocate() 分配的是一块连续干净的内存空间,如果不是干净的话,会先用zero方法,把里面填充为0.我们注意到操作的数据结构都是Memor…
Spark Tungsten揭秘 Day1 jvm下的性能优化 今天开始谈下Tungsten,首先我们需要了解下其背后是符合了什么样的规律. jvm对分布式天生支持 整个Spark分布式系统是建立在分布式jvm基础上的,jvm非常伟大的一点在于把不同机器的计算能力联合起来了,jvm也把不同机器的存储能力连接起来了. jvm是怎么做到这一点的,jvm本身就是一个软件,有自己的通讯方式以及自己的一套协议,在进行java或者scala开发的时候,就支持了一个最重要的设计模式:代理模式,基于代理模式可以…
Spark Tungsten揭秘 Day2 Tungsten-sort Based Shuffle 今天在对钨丝计划思考的基础上,讲解下基于Tungsten的shuffle. 首先解释下概念,Tungsten-sort是对普通sort的一种优化,排序的不是内容本身,而是内容序列化后字节数组的指针(元数据),把数据的排序转变为了指针数组的排序,实现了直接对序列化后的二进制数据进行排序.由于直接基于二进制数据进行操作,所以在这里面没有序列化和反序列化的过程.内存的消耗大大降低,相应的,会极大的减少的…
一:Tungsten中到底什么是Page? 1. 在Spark其实不存在Page这个类的.Page是一种数据结构(类似于Stack,List等),从OS层面上讲,Page代表了一个内存块,在Page里面可以存放数据,在OS中会存放很多不同的Page,当要获得数据的时候首先要定位具体是哪个Page中的数据,找到该Page之后从Page中根据特定的规则(例如说数据的offset和length)取出数据. 到底什么是Spark中的Page呢? 在阅读源码的时候,细致研究MemoryBlock.Java…
mysql> SHOW GLOBAL STATUS LIKE 'innodb%read%'; +---------------------------------------+---------+ | Variable_name | Value | +---------------------------------------+---------+ | Innodb_buffer_pool_read_ahead_rnd | 0 | | Innodb_buffer_pool_read_ahead…
Spark Streaming揭秘 Day4 事务一致性Exactly one 引子 对于业务处理系统,事务的一致性非常的关键,事务一致性(Exactly one),简单来说,就是输入数据一定会被处理,且只会被处理一次.下面来研究下Spark Streaming是如何做到这点的.我想说的是,Spark Streaming是一个非常优秀的软件,通过对它的研究,能对我们在类似领域的其他软件工作有所借鉴. 1.总体机制 从整个Spark Streaming的整体处理流程来分析,在上节已经介绍了,数据管…
1. 调度策略 TaskScheduler会先把DAGScheduler给过来的TaskSet封装成TaskSetManager扔到任务队列里,然后再从任务队列里按照一定的规则把它们取出来在SchedulerBackend给过来的Executor上运行.这个调度过程实际上还是比较粗粒度的,是面向TaskSetManager的. TaskScheduler是以树的方式来管理任务队列,树中的节点类型为Schdulable,叶子节点为TaskSetManager,非叶子节点为Pool,它们之间的继承关…
Kakfa揭秘 Day4 Kafka中分区深度解析 今天主要谈Kafka中的分区数和consumer中的并行度.从使用Kafka的角度说,这些都是至关重要的. 分区原则 Partition代表一个topic的分区,可以看到在构造时注册了zookeeper,也就是说kafka在分区时,是被zk管理的. 在实际存储数据时,怎么确定分区. 咱们从kafka的设计开始,为了完成高吞吐性,关键有两点设计: 使用了磁盘操作系统级的页page的访问,据说在顺序读写时比使用内存速度更快. 使用Topic进行分布…
Spark Streaming揭秘 Day29 深入理解Spark2.x中的Structured Streaming 在Spark2.x中,Spark Streaming获得了比较全面的升级,称为Structured Streaming,和之前的很不同,功能更强大,效率更高,跟其他的组件整合性也更好. 连续应用程序continuous application 首先,也是最重要的,在2.x中,提出了一个叫做continuous applications连续应用程序的概念. 如下图所示,数据从Kaf…