RF 和 GBDT联系和区别】的更多相关文章

1.RF 原理 用随机的方式建立一个森林,森林里面有很多的决策树,随机森林的每一棵决策树之间是没有关联的.在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为那一类. 2.RF 优缺点 优点:(1)在数据集上表现良好,两个随机性的引入,使得随机森林不容易陷入过拟合.(2)在当前的很多数据集上,相对其他算法有着很大的优势,两个随机性的引入,使得随机森林具有很好的抗噪声能力(3…
1.  RF(随机森林)与GBDT之间的区别 相同点: 1)都是由多棵树组成的 2)最终的结果都是由多棵树一起决定 不同点: 1)  组成随机森林的树可以是分类树也可以是回归树,而GBDT只由回归树组成 2)  组成随机森林的树可是并行生成,而GBDT只能是串行生成 3)  随机森林的结果是多棵树表决决定,而GBDT则是多棵树累加之和 4)  随机森林对异常值不敏感,而GBDT对异常值比较敏感 5)  随机森林是通过减少模型的方差来提高性能,而GBDT是减少模型的偏差来提高性能 6)  随机森林…
http://blog.csdn.net/w28971023/article/details/8240756 ================================================================ GBDT与xgboost区别 GBDT XGBOOST的区别与联系 Xgboost是GB算法的高效实现,xgboost中的基学习器除了可以是CART(gbtree)也可以是线性分类器(gblinear). 传统GBDT以CART作为基分类器,xgboost还支…
Random Forest ​采用bagging思想,即利用bootstrap抽样,得到若干个数据集,每个数据集都训练一颗树. 构建决策树时,每次分类节点时,并不是考虑全部特征,而是从特征候选集中选取若干个特征用于计算.弱特征共有p个,一般选取m=sqrt(p)个特征.当可选特征数目很大时,选取一个较小的m值,有助于决策树的构建. ​当树的数量足够多时,RF不会产生过拟合,提高树的数量能够使得错误率降低. GBDT 采用Boosting思想(注意是Boosting,不是Boostrap)​ 不采…
Xgboost是GB算法的高效实现,xgboost中的基学习器除了可以是CART(gbtree)也可以是线性分类器(gblinear). 传统GBDT以CART作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题). 传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数.顺便提一下,xgboost工具支持自定义代价函数,只要函数可一阶和二阶求导. x…
正则化 L1范数 蓝色的是范数的解空间,红色的是损失函数的解空间.L2范数和损失函数的交点处一般在坐标轴上,会使\(\beta=0\),当然并不一定保证交于坐标轴,但是通过实验发现大部分可以得到稀疏解. L2范数 蓝色的是范数的解空间;红色的是损失函数的解空间.当两个空间相交时得到目标函数的一个解. 增加了正则化项后,随着r的不断增加,原始的解空间会被不断压缩, 如果选择的\(\lambda\), 可以将最优点压缩到\(\tilde{\beta}\),从而得到复杂程度最小的模型. L2范数和损失…
100道AI基础面试题 1.协方差和相关性有什么区别? 解析: 相关性是协方差的标准化格式.协方差本身很难做比较.例如:如果我们计算工资($)和年龄(岁)的协方差,因为这两个变量有不同的度量,所以我们会得到不能做比较的不同的协方差. 为了解决这个问题,我们计算相关性来得到一个介于-1和1之间的值,就可以忽略它们各自不同的度量. 2.xgboost如何寻找最优特征?是有放回还是无放回的呢? 解析: xgboost在训练的过程中给出各个特征的增益评分,最大增益的特征会被选出来作为分裂依据, 从而记忆…
目录 1.基本知识点介绍 2.各个算法原理 2.1 随机森林 -- RandomForest 2.2 XGBoost算法 2.3 GBDT算法(Gradient Boosting Decision Tree) 2.4 LightGBM提升学习模型 1.基本知识点介绍 RandomForest.XGBoost.GBDT和LightGBM都属于集成学习. 集成学习通过构建并结合多个分类器来完成学习任务,也称为多分类系统,集成学习的目的是通过结合多个机器学习分类器的预测结果来改善基本学习器的泛化能力和…
GBDT与XGB区别 1. 传统GBDT以CART作为基分类器,xgboost还支持线性分类器(gblinear),这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题) 2. 传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数.顺便提一下,xgboost工具支持自定义代价函数,只要函数可一阶和二阶求导 3. xgboost在代价函数里加入了正则项,用于控制模型的复杂度.正则项里包含了树的叶子…
原文:http://blog.csdn.net/aspirinvagrant/article/details/48415435 GBDT,全称Gradient Boosting Decision Tree,叫法比较多,如Treelink. GBRT(Gradient Boost Regression Tree).Tree Net.MART(Multiple Additive Regression Tree)等.GBDT是决策树中的回归树,决策树分为回归树和分类树,分类树的衡量标准是最大熵,而回归…
转自http://www.cnblogs.com/pinard/p/6160412.html 1. scikit-learn随机森林类库概述 在scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor.当然RF的变种Extra Trees也有, 分类类ExtraTreesClassifier,回归类ExtraTreesRegressor.由于RF和Extra Trees的区别较小,调参方法基本相同,本文只关注于RF…
RF.GBDT和XGBoost都属于集成学习(Ensemble Learning),集成学习的目的是通过结合多个基学习器的预测结果来改善单个学习器的泛化能力和鲁棒性.  根据个体学习器的生成方式,目前的集成学习方法大致分为两大类:即个体学习器之间存在强依赖关系.必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系.可同时生成的并行化方法:前者的代表就是Boosting,后者的代表是Bagging和“随机森林”(Random Forest). 1. GBDT和XGBoost区别 XGBOOS…
一. GBDT的经典paper:<Greedy Function Approximation:A Gradient Boosting Machine> Abstract Function approximation是从function space方面进行numerical optimization,其将stagewise additive expamsions和steepest-descent minimization结合起来.而由此而来的Gradient Boosting Decision…
http://www-personal.umich.edu/~jizhu/jizhu/wuke/Friedman-AoS01.pdf https://www.cnblogs.com/bentuwuying/p/6667267.html https://www.cnblogs.com/ModifyRong/p/7744987.html https://www.cnblogs.com/bentuwuying/p/6264004.html 1.简介 gbdt全称梯度下降树,在传统机器学习算法里面是对真…
白话GBDT: https://blog.csdn.net/qq_26598445/article/details/80853873 优点: 预测精度高 适合低维数据 能处理非线性数据,该版本GBDT几乎可用于所有回归问题(线性/非线性),相对logistic regression仅能用于线性回归,GBDT的适用面非常广. 可以灵活处理各种类型的数据,包括连续值和离散值. 在相对少的调参时间情况下,预测的准确率也可以比较高.这个是相对SVM来说的. 使用一些健壮的损失函数,对异常值的鲁棒性非常强…
一. GBDT的经典paper:<Greedy Function Approximation:A Gradient Boosting Machine> Abstract Function approximation是从function space方面进行numerical optimization,其将stagewise additive expansions和steepest-descent minimization结合起来.而由此而来的Gradient Boosting Decision…
一般情况下,我们的测试用例会有很多公用数据,比如在测试购票功能的时候,可能是一直使用同一个列车号,这时候我们就没有必要在每一个Case中都去新建一个列车班次,而是设置一个全局变量: 1.Set Variable与Set Global Variable 翻译一下就可以知道这两个RF内置函数的区别:设置变量.设置全局变量 用法上的区别呢?前面已经说过,我们可以用F5来查看函数使用方法: 通过以上两图的介绍,在Arguments中我们可以看到,Set Variable传可变参数即可,而Set Glob…
曾经在看用RF和GBDT的时候,以为是非常相似的两个算法,都是属于集成算法,可是细致研究之后,发现他们根本全然不同. 以下总结基本的一些不同点 Random Forest: bagging (你懂得.原本叫Bootstrap aggregating) Recall that the key to bagging is that trees are repeatedly fit to bootstrapped subsets of the observations. One can show th…
在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注意事项,以及和GBDT调参的异同点. 1. scikit-learn随机森林类库概述 在scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor.当然RF的变种Extra Trees也有, 分类类ExtraTreesC…
在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合.本文就对集成学习中Bagging与随机森林算法做一个总结. 随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力. 1.  bagging的原理 在集成学习原理小结中,我们给Bagging画了下面一张原理图. 从上图可以看出,…
 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share Toby,项目合作QQ:231469242 随机森林就是由多个决策树组合而成的投票机制. 理解随机森林,要先了解决策树 随机森林是一个集成机器学习算法…
随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代表集成学习技术水平的方法”. 一,随机森林的随机性体现在哪几个方面? 1,数据集的随机选取 从原始的数据集中采取有放回的抽样(bagging),构造子数据集,子数据集的数据量是和原始数据集相同的.不同子数据集的元素可以重复,同一个子数据集中的元素也可以重复. 2,待选特征的随机选取 与数据集的随机选…
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因此将机器学习中常见的原理性问题记录下来,保持对各个机器学习算法原理和特点的熟练度. 本文总结了机器学习一些面试题和笔试题,以便自己学习,当然了也为了方便大家,题目是网上找的额,如果有侵权请联系小编,还有,不喜勿喷,谢谢!!! 算法分类 下面图片是借用网友做的,很好的总结了机器学习的算法分类: 问答题…
作者:NgShawn 链接:https://www.nowcoder.com/discuss/33737?type=2&order=3&pos=19&page=1 来源:牛客网   机器学习 Boost算法 CART(回归树用平方误差最小化准则,分类树用基尼指数最小化准则) GBDT与随机森林比较. GBDT(利用损失函数的负梯度在当前模型的值作为回归问题提升树算法中的残差的近似值,拟合一个回归树) KKT条件用哪些,完整描述 KNN(分类与回归) L1 与 L2 的区别以及如何解…
1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random Forest) 4. 集成学习(Ensemble Learning)Adaboost 5. 集成学习(Ensemble Learning)GBDT 6. 集成学习(Ensemble Learning)算法比较 7. 集成学习(Ensemble Learning)Stacking 1. 前言 相信看…
41.线性分类器与非线性分类器的区别以及优劣 如果模型是参数的线性函数,并且存在线性分类面,那么就是线性分类器,否则不是.常见的线性分类器有:LR,贝叶斯分类,单层感知机.线性回归常见的非线性分类器:决策树.RF.GBDT.多层感知机SVM两种都有(看线性核还是高斯核)线性分类器速度快.编程方便,但是可能拟合效果不会很好非线性分类器编程复杂,但是效果拟合能力强 42.数据的逻辑存储结构(如数组,队列,树等)对于软件开发具有十分重要的影响,试对你所了解的各种存储结构从运行速度.存储效率和适用场合等…
一.决策树模型组合 单决策树C4.5由于功能太简单,并且非常容易出现过拟合的现象,于是引申出了许多变种决策树,就是将单决策树进行模型组合,形成多决策树,比较典型的就是迭代决策树GBRT和随机森林RF. 在最近几年的paper上,如iccv这种重量级会议,iccv 09年的里面有不少文章都是与Boosting和随机森林相关的.模型组合+决策树相关算法有两种比较基本的形式:随机森林RF与GBDT,其他比较新的模型组合+决策树算法都是来自这两种算法的延伸.        核心思想:其实很多"渐进梯度&…
1. 解释一下GBDT算法的过程 GBDT(Gradient Boosting Decision Tree),全名叫梯度提升决策树,使用的是Boosting的思想. 1.1 Boosting思想 Boosting方法训练基分类器时采用串行的方式,各个基分类器之间有依赖.它的基本思路是将基分类器层层叠加,每一层在训练的时候,对前一层基分类器分错的样本,给予更高的权重.测试时,根据各层分类器的结果的加权得到最终结果. Bagging与Boosting的串行训练方式不同,Bagging方法在训练过程中…
1. 讲讲SVM 1.1 一个关于SVM的童话故事 支持向量机(Support Vector Machine,SVM)是众多监督学习方法中十分出色的一种,几乎所有讲述经典机器学习方法的教材都会介绍.关于SVM,流传着一个关于天使与魔鬼的故事. 传说魔鬼和天使玩了一个游戏,魔鬼在桌上放了两种颜色的球.魔鬼让天使用一根木棍将它们分开.这对天使来说,似乎太容易了.天使不假思索地一摆,便完成了任务.魔鬼又加入了更多的球.随着球的增多,似乎有的球不能再被原来的木棍正确分开,如下图所示. SVM实际上是在为…
参考资料: 珍藏版 | 20道XGBoost面试题 推荐系统面试题之机器学习(一) -----树模型 1. 简单介绍一下XGBoost2. XGBoost与GBDT有什么不同3. XGBoost为什么使用泰勒二阶展开4. XGBoost为什么可以并行训练5. XGBoost为什么快6. XGBoost防止过拟合的方法7. XGBoost如何处理缺失值8. XGBoost中叶子结点的权重如何计算出来9. XGBoost中的一棵树的停止生长条件10. RF和GBDT的区别11. XGBoost如何处…