Description: p<=10且p是质数,n<=7,l,r<=1e18 题解: Lucas定理: \(C_{n}^m=C_{n~mod~p}^{m~mod~p}*C_{n/p}^{m/p}\) 若把\(n,m\)在p进制下分解,那么就是\(\prod C_{n[i]}^{m[i]}\). 对于\(∈[l,r]\)的限制先容斥为\(<=r\). 考虑从低位到高位的数位dp,设\(f[i][S][j]\)表示做了前i位,S[i]第i个数选的数是<=还是>,进了j位,的…
传送门 这是一道让我重新认识lucaslucaslucas的题. 考虑到lucaslucaslucas定理: (nm)≡(n%pm%p)∗(npmp)\binom n m \equiv \binom {n\%p} {m\%p}*\binom{\frac n p}{\frac m p}(mn​)≡(m%pn%p​)∗(pm​pn​​) (mod(mod(mod p)p)p) 所以可以看成(nm)\binom n m(mn​)在p进制下的表示 于是这道题就可以用这个方法转换成求C(i,j)C(i,j…
传送门 如果观察到性质其实也不是很难想. 然而考试的时候慌得一批只有心思写暴力233. 下面是几个很有用的性质: c0,1+1≥c1,0≥c0,1c_{0,1 }+1 ≥ c_{1,0} ≥ c_{0,1}c0,1​+1≥c1,0​≥c0,1​,因为$ 10, 01 $是交替出现的. c1,0+c0,0c_{1,0 }+c_{0,0}c1,0​+c0,0​是000出现的次数. c0,1+c1,1+1c_{0,1}+ c_{1,1}+1c0,1​+c1,1​+1 是111 出现的次数. 由于满足条…
传送门 数位dpdpdp经典题. 题面已经暗示了我们按照二进制位来数位dpdpdp. 直接dpdpdp多少个数有111个111,222个111,333个111-, 然后快速幂算就行了. 于是我们枚举前几位跟nnn相同,后面比nnn小的方案数. 这个显然是可以用组合数算的. 注意nnn自己的也要算进贡献. 代码: #include<bits/stdc++.h> using namespace std; typedef long long ll; const int mod=10000007; l…
题面 传送门:UOJ Solution 这题的数位DP好蛋疼啊qwq 好吧,我们说回正题. 首先,我们先回忆一下LUCAS定理: \(C_n^m \equiv C_{n/p}^{m/p} \times C_{n\%p}^{m\%p} (\%p)\) 我们仔细观察这个定理,就可以发现一个事实:LUCAS定理本质上是在对n,m两个数做K进制下的数位分离 所以说,LUCAS定理我们可以这样表示: \(C_n^m \equiv \prod C_{a_i}^{b_i}\) (ai与bi为K进制拆分后的两个…
卢卡斯定理是一个与组合数有关的数论定理,在算法竞赛中用于求组合数对某质数的模. 第一部分是博主的个人理解,第二部分为 Pecco 学长的介绍 第一部分 一般情况下,我们计算大组合数取模问题是用递推公式进行计算的: \[C_n^m=(C_{n-1}^m+C_{n-1}^{m-1}) mod\ p \] 其中p相对较小的素数.但是当n和m过大时,计算的耗费就急剧增加\(O(mn)\),在实践中不适用.当这时候就需要Lucas定理进行快速运算: \[C_n^m=\prod_{i=0}^{k}C_{n_…
最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 . 要解决这个问题首先需要Lucas定理 或者 C!解法. Lucas定理: 我们令n=sp+q , m=tp+r . q , r ≤ p 那么,然后你只要继续对调用Lucas定理即可. 代码可以递归的去完成这个过程,其中递归终点为t = 0 : 伪代码,时间O(logp(n)*p): int L…
之前一段时间都在个人公众号账号“大内老A”发布关于ASP.NET Core的系列文章,很多人留言希望能够同步到这里,所以在这里 对这些文章做一个汇总,以便于PC端阅读.如果说微软官方文档主要关于ASP.NET Core的编程模式的话,我这个系列则主要关注整个ASP.NET Core的设计思想和实现原理.我希望这个系列为致力于深入学习ASP.NET Core的人提供一个全面.系统而深入的知识库.为了确保本系列的纯粹性,这个系列旨在关注ASP.NET Core以中间件管道核心的框架,不会涉及建立在它…
传送门 貌似就是lucas的板子题啊. 练一练手感觉挺舒服的^_^ 代码: #include<bits/stdc++.h> #define mod 10007 #define ll long long using namespace std; int T_T; ll n,m,fac[mod+5],ifac[mod+5]; inline ll lucas(ll a,ll b){ if(a<b)return 0; if(a<mod&&b<mod)return fa…
自16年从新屋熊职校毕业,入职深圳某厂从事云存储两年半了.两年半的时间很快,快的感觉一生都会飞快,两年多一直很忙,忙的几乎忘了自己是否正向改变过. 正向改变,or 积极改变,今年十一回家,与几个好友小聚,开怀畅聊,聊了过去与未来:突然觉得,在公司在岗位上,自己停止不前浑然不知,抽身之后,方被自己的状态震惊到. 从这几个方面: 工作:cs出身,从事云存储,美且名曰分布式存储,而我接触到的业务,非分布式,非传统存储,仅仅是对kv存储以lun或者说卷的管理这个层面.那么问题来了,这个层面究竟有多高的价…