【转】tf.SessionRunHook使用方法】的更多相关文章

原文地址:https://blog.csdn.net/mrr1ght/article/details/81011280 .本文有删减. tf.train.SessionRunHook()是一个类:用来定义Hooks; Hooks是什么,官方文档中关于training hooks的定义是: Hooks are tools that run in the process of training/evaluation of the model. Hooks是在模型训练/测试过程中的工具.Pytorch…
1.tf.truncated_normal使用方法 tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) 从截断的正态分布中输出随机值. 生成的值服从具有指定平均值和标准偏差的正态分布,如果生成的值大于平均值2个标准偏差的值则丢弃重新选择. 在正态分布的曲线中,横轴区间(μ-σ,μ+σ)内的面积为68.268949%. 横轴区间(μ-2σ,μ+2σ)内的面积为95.4499…
由于手机内存较小,才8G,用的时间一久,内部存储就满了,天天删垃圾,WIFI还老断线,终于忍无可忍了,决定把应用移动到SD卡,实践下来,只有少部分App默认支持移动到SD卡,大部分程序不支持只能装在内部存储空间,网上搜了下,中文的资料不多,在老外网站上找到了方法,记录下来,以后备用. 默认情况下,Android会把sd卡格式化成FAT或者exFAT格式,作为正常的存储空间,这样做可行,但是装应用就不好使了,这是由于FAT或者exFAT格式不支持Android的用户权限系统,这也意味着不能完全使用…
方法定义 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", dilations=[1,1,1,1], name=None) 参数: input:  输入的要做卷积的数据体,要求是一个`Tensor` filter: 卷积核,要求也是一个`Tensor`, shape= [filter_height, filter_width, in_channels, out…
最近在研究学习TensorFlow,在做识别手写数字的demo时,遇到了tf.nn.conv2d这个方法,查阅了官网的API 发现讲得比较简略,还是没理解.google了一下,参考了网上一些朋友写得博客,结合自己的理解,差不多整明白了. 方法定义tf.nn.conv2d (input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None) 参数:**input : ** 输入的要做卷积的图片,要…
tf.gather:用一个一维的索引数组,将张量中对应索引的向量提取出来 import tensorflow as tf a = tf.Variable([[1,2,3,4,5], [6,7,8,9,10], [11,12,13,14,15]]) index_a = tf.Variable([0,2]) b = tf.Variable([1,2,3,4,5,6,7,8,9,10]) index_b = tf.Variable([2,4,6,8]) with tf.Session() as ses…
在使用TensorFlow 1.X版本的estimator的时候经常会碰到类似于ValueError:GraphDef cannot be larger than 2GB的报错信息,可能的原因是数据太大无法写入graph. 一般来说,常见的数据构建方法如下: def input_fn(): features, labels = (np.random.sample((100,2)), np.random.sample((100,1))) dataset = tf.data.Dataset.from…
前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记2 - sklearn之iris数据集>吗?本文也将使用tf.estimator改造该示例. 本文代码都是基于API版本r1.4.本文中本地开发环境为Pycharm,在文中不再赘述. tf.estimator 内置模型 比起用底层API"较硬"的编码方式,tf.estimator的在…
上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的向量.这样每个文本在分词之后,就可以根据我们之前得到的词袋,构造成一个向量,词袋中有多少个词,那这个向量就是多少维度的了.然后就把这些向量交给计算机去计算,而不再需要文本啦.而向量中的数字表示的是每个词所代表的权重.代表这个词对文本类型的影响程度. 在这个过程中我们需要解决两个问题:1.如何计算出适…
一.节点中使用(cpp,python) 1. ros wiki 提供的tutorials 2. https://blog.csdn.net/start_from_scratch/article/details/50762293/ 重点理解 tf广播 和 tf监听 方法! 二.命令行使用 tf_monitor:  monitors transforms between frames. 可以查看参考坐标系之间的转换关系和发布频率 rosrun tf tf_monitor rosrun tf tf_m…