OpenCV原则解读HAAR+Adaboost】的更多相关文章

因为人脸检测项目.用途OpenCV在旧分类中的训练效果.因此该检测方法中所使用的分类归纳.加上自己的一些理解.重印一些好文章记录. 文章http://www.61ic.com/Article/DaVinci/TMS320DM646x/201310/50733.html攻克了下面函数移植到DSP上的一些问题 以下为HAAR特征检測的详细流程:http://blog.csdn.net/nongfu_spring/article/details/38977555 一.在计算每一个窗体的haar值时.使…
这几天研究了OpenCV源代码 Haar AdaBoost算法,作了一下改进 1.去掉了全部动态分配内存的操作.对嵌入式系统有一定的速度提升 2.凝视覆盖了大量关键代码 3.降低了代码一半的体积,而且降低了部分健壮性的代码,速度比OpenCV源代码提升16% 4.改动了大量数据结构,不依赖CV源代码直接编译 5.去掉了double型,改成Int 6.开方改成查表 7.除法改成乘法加位移 注:使用时请注意,现仅支持单分支的Stages和单结点的Classifier训练好的结果集 在720MHZ的D…
阅读须知 本博客涉及到的资源: 正样本:http://download.csdn.net/detail/zhuangxiaobin/7326197 负样本:http://download.csdn.net/detail/zhuangxiaobin/7326205 训练和检测工具:http://download.csdn.net/detail/zhuangxiaobin/7414793 分类器xml文件:http://download.csdn.net/detail/zhuangxiaobin/7…
我们重点分析了Haar特征的概念以及如何计算Haar特征,并介绍了Haar+Adaboost分类器它们的组合以及Adaboost分类器如何使用和训练.这节课我们将通过代码来实现一下Haar+Adaboost分类器实现的人脸识别. 计算jpg图片的haar特征,不过这一步opencv已经帮我们做了,所以我们不需要.我们只需要对这个图片进行一个灰度处理,因为所有的haar特征必须要是基于灰度图片来进行计算的.第四步,我们进行检测.所以我们要检测出来当前的haar特征的人脸以及人脸上的眼睛.总共有两个…
<pre name="code" class="cpp">#include "Haar.h" #include "loadCascade.h" #include "Util.h" #include "stdio.h" #include "string.h" #include <math.h> #include <stdint.h>…
本博原创,如有转载请注明本博网址http://blog.csdn.net/ding977921830/article/details/46799043. opencv源代码主要是基于adaboost算法.进行人脸的haar分类器训练!在我近两个月的研究opencv源代码的过程非常枯燥,也有非常多收获.在我博客中也写了不少文章.比較乱,如今整理一下文件夹例如以下.大家能够直接点开链接的.这样一方面能够方便自己查阅,还有一方面也是回报csdn方便大家,如有不足请大家多多指出 更新日期:2015-07…
参考博文: 1.http://blog.csdn.net/wuxiaoyao12/article/details/39227189 2.http://www.cnblogs.com/easymind223/archive/2012/07/03/2574826.html 3.http://blog.csdn.net/liulina603/article/details/8197889 使用的经验总结: 1 正负样本比例问题:1:4或者1:5训练出来的分类器要优于1:1或者1:10 正负样本比例接近…
不管新版本的CascadeClassifier,还是老版本的HAAR检测函数cvHaarDetectObjects,都使用了groupRectangles函数进行窗口的组合,其函数原型有以下几个: CV_EXPORTS void groupRectangles(CV_OUT CV_IN_OUT vector<Rect>& rectList, int groupThreshold, double eps=0.2); CV_EXPORTS_W void groupRectangles(CV…
使用机器学习的方法进行人脸检测的第一步需要训练人脸分类器,这是一个耗时耗力的过程,需要收集大量的正负样本,并且样本质量的好坏对结果影响巨大,如果样本没有处理好,再优秀的机器学习分类算法都是零. 今年3月23日,微软公司在推特(Twitter)社交平台上推出了一个基于机器学习的智能聊天机器人Tay,Tay被设定为一个年龄为十几岁的女孩,主要目标受众是18岁至24岁的青少年.人们只需要@一下Tay,Tay就会追踪该用户的网名.性别.喜欢的食物.邮编.感情状况等个人信息.除了聊天,Tay还可以说笑话,…
本教程基于以下环境 macOS 10.12.6,OpenCV 3.3.0,python 3.6.由于网上基于masOS系统的教程太少,想出一篇相关教程造福大家-本文旨在学习如何在opencv中基于haar-like特征训练自己的分类器,并且用该分类器用于模式识别. 1. 安装OpenCV和OpenCV源代码 OpenCV至少要保证下载好2.4.5以上的版本,同时源码要对应好自己所安装的版本. brew tap homebrew/science brew install --with-tbb op…
API说明: cv::CascadeClassifier::detectMultiScale(InputArray image,//输入灰度图像 CV_OUT std::vector<Rect>& objects,//返回目标的外接矩形 double scaleFactor = 1.1,//检测的尺度跳变量,这个值越大,某些尺寸的对象无法被检测,但检测更快 ,//有多少个重叠的检测标记才被认为有小 , //新版本中没用 Size minSize = Size(),//目标的最小尺寸 S…
人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前人脸检测的方法主要有两大类:基于知识和基于统计. 基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根据眼睛.眉毛.嘴巴.鼻子等器官的特征以及相互之间的几何位置关系来检测人脸.主要包括模板匹配.人脸特征.形状与边缘.纹理特性.颜色特征等方法. 基于统计的方法:将人脸看作一个整体的模式——二维像素矩阵,从统计…
使用OpenCV作图像检测, Adaboost+haar决策过程,其中一部分源代码如下: 函数调用堆栈的底层为: 1.使用有序决策桩进行预测 template<class FEval> inline int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum ) { int nodeOfs = 0, lea…
基于Haar特征Adaboost人脸检测级联分类 基于Haar特征Adaboost人脸检测级联分类,称haar分类器. 通过这个算法的名字,我们能够看到这个算法事实上包括了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了. 1        算法要点 Haar分类器 = Haar-like特征 + 积分图方法 + AdaBoost +级联: Haar分类器算法的要点例如以下: a)        使用Haar-like特征做检測. b)       使用积分图…
浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前的人脸检测方法主要有两大类:基于知识和基于统计. Ø  基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根据眼睛.眉毛.嘴巴.鼻子等器官的特征以及相互之间的几何位置关系来检测人脸. Ø  基于统计的方法:将人脸看作一个整体的模式——二维像素矩…
基于Haar特征的Adaboost级联人脸检测分类器基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了.1        算法要点Haar分类器 = Haar-like特征 + 积分图方法 + AdaBoost +级联:Haar分类器算法的要点如下:a)        使用Haar-like特征做检测.b)       使用积分图(Inte…
原文:照片美妆---基于Haar特征的Adaboost级联人脸检测分类器 本文转载自张雨石http://blog.csdn.net/stdcoutzyx/article/details/34842233 基于Haar特征的Adaboost级联人脸检测分类器 基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了. 1        算法要点 H…
[1]基础学习笔记之opencv(1):opencv中facedetect例子浅析 http://www.cnblogs.com/tornadomeet/archive/2012/03/22/2411318.html[2]OpenCV学习笔记(二十七)——基于级联分类器的目标检测objdect http://blog.csdn.net/yang_xian521/article/details/6973667[3]Haar+Adaboost实现人头检测 http://blackhuman.blog…
我们要探讨的Haar分类器实际上是Boosting算法(提升算法)的一个应用,Haar分类器用到了Boosting算法中的AdaBoost算法,只是把AdaBoost算法训练出的强分类器进行了级联,并且在底层的特征提取中采用了高效率的矩形特征和积分图方法,这里涉及到的几个名词接下来会具体讨论. 在2001年,Viola和Jones两位大牛发表了经典的<Rapid Object Detection using a Boosted Cascade of Simple Features>和<R…
即将进入涉及大量数学知识的阶段,先读下“别人家”的博文放松一下. 读罢该文,基本能了解面部识别领域的整体状况. 后生可畏. 结尾的Google Facenet中的2亿数据集,仿佛隐约听到:“你们都玩儿蛋去吧”. 长文干货!走近人脸检测:从 VJ 到深度学习(上) 长文干活!走进人脸检测:从 VJ 到深度学习(下) Ello 戏说系列 人脸识别简史与近期发展 人脸检测的开始和基本流程 具体来说,人脸检测的任务就是判断给定的图像上是否存在人脸, 如果人脸存在,就给出全部人脸所处的位置及其大小.由于人…
一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前的人脸检测方法主要有两大类:基于知识和基于统计. "基于知识的方法主要利用先验知识将人脸看作器官特征的组合,根据眼睛.眉毛.嘴巴.鼻子等器官的特征以及相互之间的几何位置关系来检测人脸.基于统计的方法则将人脸看作一个整体的模式--二维像素矩阵,从统计的观点通过大量人脸图像样本构造人脸模式…
源地址:http://www.thinkface.cn/thread-142-1-1.html 由于工作需要,我开始研究人脸检测部分的算法,这期间断断续续地学习Haar分类器的训练以及检测过程,在这里根据各种论文.网络资源的查阅和对代码的理解做一个简单的总结.我试图概括性的给出算法的起源.全貌以及细节的来龙去脉,但是水平有限,只能解其大概,希望对初学者起到帮助,更主要的是对我个人学习的一次提炼. 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据…
转载地址http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html 浅析人脸检测之Haar分类器方法  [补充] 这是我时隔差不多两年后, 回来编辑这篇文章加的这段补充, 说实话看到这么多评论很是惊讶, 有很多评论不是我不想回复, 真的是时间久了, 很多细节我都忘记了, 无力回复, 非常抱歉.  我本人并非做CV的, 这两年也都没有再接触CV, 作为一个本科毕业的苦逼码工, 很多理论基础都不扎实, 回顾这篇文章的时候, 我知道其实有很多…
首先给大家推荐一本书:机器学习算法原理与编程实践 本文内容全部转载于书中,相当于一个读书笔记了吧 绪论 1992年麻省理工学院通过实验对比了基于结构特征的方法与基于模版匹配的方法,发现模版匹配的方法要优于基于特征的方法. 以支持向量机为代表的统计学习理论在随后被应用到了人脸识别与确认中去.但是由于算法运行效率问题,很快被一种新的算法替代了.这就是2001年康柏研究院提出的基于简单矩形特征和AdaBoost的实时人脸检测系统.该方法的主要贡献包括: 1.可以快速计算简单矩形特征作为人脸图像特征 2…
部分 IX计算摄影学 OpenCV-Python 中文教程(搬运)目录 49 图像去噪目标 • 学习使用非局部平均值去噪算法去除图像中的噪音 • 学习函数 cv2.fastNlMeansDenoising(),cv2.fastNlMeansDenoisingColored()等原理 在前面的章节中我们已经学习了很多图像平滑技术,比如高斯平滑,中值平滑等,当噪声比较小时这些技术的效果都是很好的.在这些技术中我们选取像素周围一个小的邻域然后用高斯平均值或者中值平均值取代中心像素.简单来说,像素级别的…
引自:http://blog.csdn.net/sinat_26917383/article/details/72885715 人脸识别热门,表情识别更加.但是表情识别很难,因为人脸的微表情很多,本节介绍一种比较粗线条的表情分类与识别的办法. Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Sequential式.Model式)解读(二) 3.keras系列︱图像…
opencv识别二维码:https://blog.csdn.net/jia20003/article/details/77348170 opencv视频:http://www.opencv.org.cn/forum.php?mod=viewthread&tid=259029 基于opencv2实现证件照换背景(从蓝色到红色):http://blog.csdn.net/jiang111_111shan/article/details/46272429 怎么检测图片中的高光(镜面反射)部分的位置:h…
开发配置 OpenCV的例程中已经带有了人脸检测的例程,位置在:OpenCV\samples\facedetect.cpp文件,OpenCV的安装与这个例子的测试可以参考我之前的博文Linux 下编译安装OpenCV. 网上能够找到关于OpenCV人脸检测的例子也比较多,大多也都是基于这个例程来更改,只是多数使用的是OpenCV 1.0的版本,而OpenCV2.0以后由于模块结构的更改,很多人并没有将例程运行起来.如果是新版的OpenCV跑旧的例程,编译运行出错的话,需要确保: #include…
如何利用特征来区分目标,进行阈值判决.adaboost分类器它的优点在于前一个基本分类器分出的样本,在下一个分类器中会得到加强.加强后全体的样本那么再次进行整个训练.加强后的全体样本再次被用来训练下一个基本的分类器. 我们正确的样本它的系数逐渐地减小,而我们的负样本得到了加强.这就是adaboost它的优点.它的优点就是能够自适应这种过程.它能够把每一次检测中出错的负样本进行加强,那么再把整个结果算到下一个基本的分类器中.那么一轮一轮不停地循环.所以这里还有一个问题,叫循环的终止条件或者叫训练的…
1.度娘:“OpenCV 物体识别” 1.1.opencv实时识别指定物体 - 诺花雨的博客 - CSDN博客.html(https://blog.csdn.net/qq_27063119/article/details/79247266) ZC:主看这个,讲的比较细致,操作一般都是使用的 OpenCV里面的exe,一些代码是 java的 可以搞定,最后一段测试代码 是Python 但是比较短 应该可以转成C++的来测试. ZC:照着做了,还需研究 1.2.利用深度学习和OpenCV实现物体检测…