1. PIL image转换成array img = np.asarray(image) 需要注意的是,如果出现read-only错误,并不是转换的错误,一般是你读取的图片的时候,默认选择的是"r","rb"模式有关. 修正的办法: 手动修改图片的读取状态 img.flags.writeable = True # 将数组改为读写模式 2. array转换成image Image.fromarray(np.uint8(img)) 参考资料: http://stacko…
其它课程中的python---3.numpy总结(非常全) 一.总结 一句话总结: 学习方式应该是:听课+总结:-->找总结博客+再总结 需要始终记住:凭借,继承,复用 1.numpy的主要功能有哪些? 数组的转置,拼接,计算,切片,索引,组合 线性代数的各种操作:线代本身就是对数组(矩阵)的各种操作 2.numpy数组对象主要的属性? .shape :各维度的尺度 (2,5) .size :元素的个数 10 .dtype :元素的类型 dtype(‘int32’) .itemsize :每个元…
一.matrix特殊属性解释 numpy中matrix有下列的特殊属性,使得矩阵计算更加容易 摘自 NumPy Reference Release 1.8.1 1.1 The N-dimensional array (ndarray) An ndarray is a (usually fixed-size) multidimensional container of items of the same type and size. 摘自 NumPy Reference Release 1.9.1…
 在python&numpy中切片(slice) 上文说到了,词频的统计在数据挖掘中使用的频率很高,而切片的操作同样是如此.在从文本文件或数据库中读取数据后,需要对数据进行预处理的操作.此时就需要对数据进行变换,切片,来生成自己需要的数据形式. 对于一维数组来说,python原生的list和numpy的array的切片操作都是相同的.无非是记住一个规则arr_name[start: end: step],就可以了. 实例: 下面是几个特殊的例子: [:]表示复制源列表 负的index表示,从后往…
近期在好几个地方都看到meshgrid的使用,虽然之前也注意到meshgrid的用法.但总觉得印象不深刻,不是太了解meshgrid的应用场景.所以,本文将进一步介绍Numpy中meshgrid的用法. Meshgrid函数的基本用法 在Numpy的官方文章里,meshgrid函数的英文描述也显得文绉绉的,理解起来有些难度.可以这么理解,meshgrid函数用两个坐标轴上的点在平面上画网格.用法: [X,Y]=meshgrid(x,y) [X,Y]=meshgrid(x)与[X,Y]=meshg…
1. numpy.reshape  重塑 reshape是一种函数,函数可以重新调整矩阵的行数.列数.维数. B = reshape(A,m,n) 返回一个m*n的矩阵B, B中元素是按列从A中得到的.如果A中元素个数没有m*n个, 则会引发错误.   2.numpy.shape  输入参数:类似数组(比如列表,元组)等,或是数组. 返回:一个整型数字的元组,元组中的每个元素表示相应的数组每一维的长度. 注:只有数组array才可以使用shape和reshape函数.…
[开发技巧]·Numpy中对axis的理解与应用 1.问题描述 在使用Numpy时我们经常要对Array进行操作,如果需要针对Array的某一个纬度进行操作时,就会用到axis参数. 一般的教程都是针对二维矩阵操作axis,当axis为0时,计算方向时列,当axis为1时计算方向为行. 但是这样的描述并不能让我们真正理解axis的含义.下面我一个三维Array,来带领大家深入理解axis 2.实战讲解 >>> import numpy as np >>> arrays…
https://www.cnblogs.com/td15980891505/p/6198036.html numpy.random模块中提供啦大量的随机数相关的函数. 1 numpy中产生随机数的方法 1)rand() 产生[0,1]的浮点随机数,括号里面的参数可以指定产生数组的形状 2)randn() 产生标准正太分布随机数,参数含义与random相同 3)randint() 产生指定范围的随机数,最后一个参数是元祖,他确定数组的形状 1 2 3 4 5 6 7 8 9 10 11 12 im…
目录 广播的引出 广播的原则 数组维度不同,后缘维度的轴长相符 数组维度相同,其中有个轴为1 参考: 广播的引出  numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.array([[1,1,3],[2,2,4]]) print(x*y) #numpy当中的数组相乘是对应元素的乘积,与线性代数当中的矩阵相乘不一样 输入结果如下: ''' [[ 2 2 9] [ 2 4…