分类问题中的“维数灾难” - robotMax 在看机器学习的论文时,经常会看到有作者提到“curse of dimensionality”,中文译为“维数灾难”,这到底是一个什么样的“灾难”?本文将通过一个例子来介绍这令人讨厌的“curse of dimensionality”以及它在分类问题中的重要性. 假设现在有一组照片,每一张照片里有一只猫或者一条狗.我们希望设计一个分类器可以自动地将照片中的动物辨别开来.为了实现这个目标,首先需要考虑如何将照片中的动物的特征用数字的形式表达出来.猫与狗…
原文章地址:维度灾难 - 柳枫的文章 - 知乎 https://zhuanlan.zhihu.com/p/27488363 对于大多数数据,在一维空间或者说是低维空间都是很难完全分割的,但是在高纬空间间往往可以找到一个超平面,将其完美分割. 引用The Curse of Dimensionality in Classification的例子来说明:想象下我们有一系列图片,每张图描述的不是猫就是狗.现在我们想利用这些图片来做一个可以判断猫狗的分类器.首先,我们需要找到一些描述猫狗特征,利用这些特征…
主要内容: 解决MDP问题的算法: 离散化: 模型MDP的同化型: (model/similator) 拟合值迭代算法: Q函数: 近似政策迭代: 笔记转自:http://blog.csdn.net/dark_scope/article/details/8252969 连续状态的MDP 之前我们的状态都是离散的,如果状态是连续的,下面将用一个例子来予以说明,这个例子就是inverted pendulum问题 也就是一个铁轨小车上有一个长杆,要用计算机来让它保持平衡(其实就是我们平时玩杆子,放在手…
主成分分析 PCA 协方差矩阵 假设我们有 \[ X = \begin{pmatrix}X_1\\X_2\\\vdots\\X_m\end{pmatrix}\in\mathbb{R}^{m\times n} \] 那么协方差矩阵 \[ C_x= \dfrac{1}{n-1}XX^T = \dfrac{1}{n-1}\begin{pmatrix}X_1X_1^T & X_1X_2^T & \cdots & X_1X_m^T\\X_2X_1^T & X_2X_2^T&\…
美团 https://tech.meituan.com/machinelearning-data-feature-process.html 维数灾难 待续...…
/** * @author:(LiberHome) * @date:Created in 2019/2/28 19:39 * @description: * @version:$ */ /* 编写一个函数,要求从给定的向量A中删除元素值在x到y之间的所有元素(向量要求各个元素之间不能有间断), 函数原型为int del(int A ,int n , int x , int y),其中n为输入向量的维数,返回值为删除元素后的维数*/ public class page0602 { public s…
简单理解有关数组维数的概念: 1.编程中用到的多维的数组,最多也就是二维数组了 2.数组的维数从0开始计算 using System; using System.Collections.Generic; using System.Collections; using System.IO; using System.Security.Cryptography; using System.Text; namespace myMethod { class lgs { static void Main(…
tensorflow的命名来源于本身的运行原理,tensor(张量)意味着N维数组,flow(流)意味着基于数据流图的计算,所以tensorflow字面理解为张量从流图的一端流动到另一端的计算过程. tensorflow中的所有数据如图片.语音等都是以张量这种数据结构的形式表示的.张量是一种组合类型的数据类型,表示为一个多维数组,通用的表示形式为 [T1,T2,T3,-Tn]  ,其中 T  可以是在tensorflow中指定类型的单个数字,也可以是一个矩阵.张量(tensor)的属性--维数(…
剑指Offer之二维数组中查找目标数 题目描述 ​ 在一个二维数组中(每个一维数组的长度相等),每一行都是从左到右递增的顺序排序,每一列都是从上到下递增的顺序排序,输入这样一个二维数组和一个整数,判断该整数是否在二维数组中. 解题思路及代码 // 暴力查找法,通过遍历整个二维数组进行判断 public static boolean violence(int[][] arr,int target) { for (int i = 0; i < arr.length; i++) { for (int…
HOG构造函数 CV_WRAP HOGDescriptor() :winSize(64,128), blockSize(16,16), blockStride(8,8),      cellSize(8,8),nbins(9), derivAperture(1), winSigma(-1), histogramNormType(HOGDescriptor::L2Hys),L2HysThreshold(0.2), gammaCorrection(true), nlevels(HOGDescript…