熟练的使用CIFAR-10数据集】的更多相关文章

原网址:https://data-flair.training/blogs/cnn-tensorflow-cifar-10/ by DataFlair Team · Published May 21, 2018 · Updated September 15, 2018 1.目标-TensorFlow CNN 卷积神经网络 在之前的TensorFlow教程中,我们讨论了使用TensorFlow进行手写识别.今天我们讲学习怎样使用TensorFlow创建一个卷积神经网络关于CIFAR 10的分类模型…
关于如何将数据集封装为 Bunch 可参考 关于 『AI 专属数据库的定制』的改进. PyTables 是 Python 与 HDF5 数据库/文件标准的结合.它专门为优化 I/O 操作的性能.最大限度地利用可用硬件而设计,并且它还支持压缩功能. 下面的代码均是在 Jupyter NoteBook 下完成的: import sys sys.path.append('E:/xinlib') from base.filez import DataBunch import tables as tb i…
Minst训练 我的路径:G:\Caffe\Caffe For Windows\examples\mnist  对于新手来说,初步完成环境的配置后,一脸茫然.不知如何跑Demo,有么有!那么接下来的教程就是我们这些新手的福利了. 第一步:如果前面的train_net.cpp编译通过了,那么这个就非常简单.Caffe训练和测试的数据都是需要leveldb格式的,niuzhiheng大牛已经给我们转好了MNIST的数据格式.如下图:  第二步:如上图所示,文件夹下有个get_mnist_leveld…
Step 1:数据加载和处理 一般使用深度学习框架会经过下面几个流程: 模型定义(包括损失函数的选择)——>数据处理和加载——>训练(可能包括训练过程可视化)——>测试 所以自己写代码的时候基本上按照这四大模块四步走就ok了. 本例步骤: A.Load and normalizing the CIFAR10 training and test datasets using torchvisionB.Define a Convolution Neural NetworkC.Define a…
基准数据集 深度学习中经常会使用一些基准数据集进行一些测试.其中 MNIST, Cifar 10, cifar100, Fashion-MNIST 数据集常常被人们拿来当作练手的数据集.为了方便,诸如 Keras.MXNet.Tensorflow 都封装了自己的基础数据集,如 MNIST.cifar 等.如果我们要在不同平台使用这些数据集,还需要了解那些框架是如何组织这些数据集的,需要花费一些不必要的时间学习它们的 API.为此,我们为何不创建属于自己的数据集呢?下面我仅仅使用了 Numpy 来…
2017 年,Geoffrey Hinton 在论文<Dynamic Routing Between Capsules>中提出 CapsNet 引起了极大的关注,同时也提供了一个全新的研究的方向.今日,CapsNet 的作者 Sara Sabour.Hinton 老爷子联合牛津大学的研究者提出了胶囊网络的改进版本--堆栈式胶囊自编码器.这种胶囊自编码器可以无监督地学习图像中的特征,并在无监督分类任务取得最佳或接近最佳的表现.这也是胶囊网络第一次在无监督领域取得新的突破. 一个目标可以被看做是一…
矩池云将 keras 预训练模型保存目录为 /public/keras_pretrained_model/ 使用方法: 先执行命令,创建目录 mkdir -p ~/.keras/models/ 然后将预训练模型复制进去. 但是其中因为cifar-10的特殊之处所以只有cifar-10这个数据集需要对它进行改名才能正常使用 cp /public/keras_datasets/cifar-10-python.tar.gz ~/.keras/datasets/cifar-10-batches-py.t…
原文链接 本文修正部分错误. 以下是精心收集的一些非常好的开放数据集,也是做 AI 研究不容错过的数据集. 标签解释 [经典]这些是在 AI 领域中非常著名.众所周知的数据集.很少有研究者或工程师没有听说过它们. [有用]这些是更加接近现实世界的.精心设计的数据集.而且,这些数据集通常在产品和研发两方面都有用. [学术]这些是在机器学习和 AI 的学术研究中通常作为基准或基线使用的数据集.无论好坏,研究人员都使用这些数据集来验证算法. [陈旧]这些数据集,无论是否实用,已经有相当长历史了. 计算…
CIFAR-10是一个用于普适物体识别的数据集.Cifar-10由60000张32*32的RGB彩色图片构成,50000张训练图片,10000张测试图片,分为10类.cifar下载地址: http://www.cs.toronto.edu/~kriz/cifar.html 数据集分为3个版本,分别是Matlab.python和二进制格式的,这里选择二进制格式的下载.包含五个训练文件,一个测试文件: 1. cifar二进制数据库转换成lmdb文件 新建一个binToLmdb.bat的脚本文件,输入…
CIFAR-10数据集含有6万个32*32的彩色图像,共分为10种类型,由 Alex Krizhevsky, Vinod Nair和 Geoffrey Hinton收集而来.包含50000张训练图片,10000张测试图片 http://www.cs.toronto.edu/~kriz/cifar.html 数据集的数据存在一个10000*3072 的 numpy数组中,单位是uint8s,3072是存储了一个32*32的彩色图像.(3072=1024*3).前1024位是r值,中间1024是g值…