NameNode 学习目标 理解 namenode 的工作机制尤其是元数据管理机制,以增强对 HDFS 工作原理的 理解,及培养 hadoop 集群运营中“性能调优”.“namenode”故障问题的分析解决能力 问题场景 1.Namenode 服务器的磁盘故障导致 namenode 宕机,如何挽救集群及数据? 2.Namenode 是否可以有多个?namenode 内存要配置多大?namenode 跟集群数据存储能 力有关系吗? 3.文件的 blocksize 究竟调大好还是调小好?结合 map…
系列文章: FastAPI 学习之路(一)fastapi--高性能web开发框架 FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四) FastAPI 学习之路(五) FastAPI 学习之路(六)查询参数,字符串的校验 FastAPI 学习之路(七)字符串的校验   FastAPI 学习之路(八)路径参数和数值的校验 FastAPI 学习之路(九)请求体有多个参数如何处理? FastAPI 学习之路(十)请求体的字段 FastAPI 学习之路(十一)请…
MapReduce是什么 首先让我们来重温一下 hadoop 的四大组件: HDFS:分布式存储系统 MapReduce:分布式计算系统 YARN:hadoop 的资源调度系统 Common:以上三大组件的底层支撑组件,主要提供基础工具包和 RPC 框架等 MapReduce 是一个分布式运算程序的编程框架,是用户开发“基于 Hadoop 的数据分析应用” 的核心框架 MapReduce 核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布 式运算程序,并发运行在一个 Hadoo…
摘抄自:https://tech.meituan.com/spark-tuning-basic.html 一.概述 在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常…
案例说明 现有如此三份数据:1.users.dat 数据格式为: 2::M::56::16::70072, 共有6040条数据对应字段为:UserID BigInt, Gender String, Age Int, Occupation String, Zipcode String对应字段中文解释:用户id,性别,年龄,职业,邮政编码 2.movies.dat 数据格式为: 2::Jumanji (1995)::Adventure|Children's|Fantasy, 共有3883条数据对应字…
MapReduce 多 Job 串联 需求 一个稍复杂点的处理逻辑往往需要多个 MapReduce 程序串联处理,多 job 的串联可以借助 MapReduce 框架的 JobControl 实现 实例 以下有两个 MapReduce 任务,分别是 Flow 的 SumMR 和 SortMR,其中有依赖关系:SumMR 的输出是 SortMR 的输入,所以 SortMR 的启动得在 SumMR 完成之后 Configuration conf1 = new Configuration(); Con…
概述 一个完整的 MapReduce 程序在分布式运行时有两类实例进程: 1.MRAppMaster:负责整个程序的过程调度及状态协调 2.Yarnchild:负责 map 阶段的整个数据处理流程 3.Yarnchild:负责 reduce 阶段的整个数据处理流程 以上两个阶段 MapTask 和 ReduceTask 的进程都是 YarnChild,并不是说这 MapTask 和 ReduceTask 就跑在同一个 YarnChild 进行里 MapReduce 套路图 MapReduce 程…
一.Pod控制器及其功用 Pod控制器是用于实现管理pod的中间层,确保pod资源符合预期的状态,pod的资源出现故障时,会尝试 进行重启,当根据重启策略无效,则会重新新建pod的资源. pod控制器有多种类型: ReplicaSet: 代用户创建指定数量的pod副本数量,确保pod副本数量符合预期状态,并且支持滚动式自动扩容和缩容功能.ReplicaSet主要三个组件组成: (1)用户期望的pod副本数量 (2)标签选择器,判断哪个pod归自己管理 (3)当现存的pod数量不足,会根据pod资…
流量统计项目案例 样本示例 需求 1. 统计每一个用户(手机号)所耗费的总上行流量.总下行流量,总流量 2. 得出上题结果的基础之上再加一个需求:将统计结果按照总流量倒序排序 3. 将流量汇总统计结果按照手机归属地不同省份输出到不同文件中 第一题 import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.h…
一.泛型 Scala支持类型参数化,使得我们能够编写泛型程序. 1.1 泛型类 Java中使用<>符号来包含定义的类型参数,Scala则使用[]. class Pair[T, S](val first: T, val second: S) { override def toString: String = first + ":" + second } object ScalaApp extends App { // 使用时候你直接指定参数类型,也可以不指定,由程序自动推断…