学习笔记之Naive Bayes Classifier】的更多相关文章

Naive Bayes classifier - Wikipedia https://en.wikipedia.org/wiki/Naive_Bayes_classifier In machine learning, naive Bayes classifiers are a family of simple "probabilistic classifiers" based on applying Bayes' theorem with strong (naive) independ…
一.引言 在开始算法介绍之前,让我们先来思考一个问题,假设今天你准备出去登山,但起床后发现今天早晨的天气是多云,那么你今天是否应该选择出去呢? 你有最近这一个月的天气情况数据如下,请做出判断. 这个月下雨的天数占10% 这个月早晨是多云的天数占40% 在下雨的天数中早晨是多云的占50% 如果有普通本科的概率论知识,这个问题就不难解决,计算一下今天会下雨的概率,然后根据概率决定即可.解决方式如下: 可以发现,今天下雨的概率只有12.5%,还是可以出去玩的(当然如果怕万一,那还是呆在家里). 二.B…
一.病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难. 某个医院早上收了六个门诊病人,如下表. 症状 职业 疾病 打喷嚏 护士 感冒  打喷嚏 农夫 过敏  头痛 建筑工人 脑震荡  头痛 建筑工人 感冒  打喷嚏 教师 感冒  头痛 教师 脑震荡 现在又来了第七个病人,是一个打喷嚏的建筑工人.请问他患上感冒的概率有多大? 根据贝叶斯定理: P(A|B) = P(B|A) P(A) / P(B) 可得 P(感冒|打喷嚏x建筑工人)  = P(打喷嚏x建筑工人|感冒)…
介绍朴素贝叶斯分类器的文章已经很多了.本文的目的是通过基本概念和微小实例的复述,巩固对于朴素贝叶斯分类器的理解. 一 朴素贝叶斯分类器基础回顾 朴素贝叶斯分类器基于贝叶斯定义,特别适用于输入数据维数较高的情况.虽然朴素贝叶斯分类器很简单,但是它确经常比一些复杂的方法表现还好. 为了简单阐述贝叶斯分类的基本原理,我们使用上图所示的例子来说明.作为先验,我们知道一个球要么是红球要么是绿球.我们的任务是当有新的输入(New Cases)时,我们给出新输入的物体的类别(红或者绿).这是贝叶斯分类器的典型…
朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/60140664.在这里,我按自己的理解再整理一遍. 在机器学习中,我们有时需要解决分类问题.也就是说,给定一个样本的特征值(feature1,feature2,...feauren),我们想知道该样本属于哪个分类标签(label1,label2,...labeln).即:我们想要知道该样本各个标签的条件概…
贝叶斯分类器的分类 根据实际处理的数据类型, 可以分为离散型贝叶斯分类器和连续型贝叶斯分类器, 这两种类型的分类器, 使用的计算方式是不一样的. 贝叶斯公式 首先看一下贝叶斯公式 $ P\left ( y|x \right ) = \frac{P\left ( x|y \right ) * P\left ( y \right )}{\sum_{i=1}^{n}P\left ( x|y_{i} \right )*P\left ( y_{i} \right )} $ 其推导很简单, 因为 P(yx)…
https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_naive_bayes.pdf  -- textbook https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/ -- tutorial It is a probabilistic framework for solving classification problems.…
机器学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 机器学习是人工智能的一个分支.人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然.清晰的脉络.显然,机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题.机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.计算复杂性理论等多门学科.…
    朴素贝叶斯是一种很简单的分类方法,之所以称之为朴素,是因为它有着非常强的前提条件-其所有特征都是相互独立的,是一种典型的生成学习算法.所谓生成学习算法,是指由训练数据学习联合概率分布P(X,Y),然后求得后验概率P(X|Y).具体来说,利用训练数据学习P(X|Y)和p(Y)的估计,得到联合概率分布:     概率估计可以是极大似然估计,或者贝叶斯估计.     假设输入 X 为n维的向量集合,输出 Y 为类别,X 和 Y 都是随机变量.P(X,Y)是X和Y的联合概率分布,训练数据集为:…
朴素贝叶斯算法(Naive Bayes) 阅读目录 一.病人分类的例子 二.朴素贝叶斯分类器的公式 三.账号分类的例子 四.性别分类的例子 生活中很多场合需要用到分类,比如新闻分类.病人分类等等. 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法. 回到顶部 一.病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难. 某个医院早上收了六个门诊病人,如下表. 症状 职业 疾病 打喷嚏 护士 感冒  打喷嚏 农夫 过敏…