动态规划:LIS优化】的更多相关文章

题目:一个序列有N个数:A[1],A[2],…,A[N],求出最长非降子序列的长度.(见动态规划---LIS) /* 题目:一个序列有N个数:A[1],A[2],…,A[N],求出最长非降子序列的长度. */ #include <stdio.h> unsigned max_len( int [] , size_t ); size_t b_point( int [] , size_t ); int max(size_t , size_t ); int main( void ) { , , , ,…
题目大意是,非你若干个任务,任务分别对应开始时间.预期收益.持续时间三项指标,让你从中选择一个受益最大的方案(没有开始时间相同的任务). 于是,标准状态转移方程应当为,设DP[K]为选择了前K个任务的最大收益,后面转移为DP[K+1]=MAX且能够共存的(DP[I]):很容易想到N^2的暴力更新,但是这题数量太大,会炸得连渣都不剩.于是需要优化到较低的数量级(比如NLOGN) 注意到,我们也许不用对某个任务来选取前K个的最大值,不容易想到优化但是想想刘汝佳同志的话——不方便直接求解的时候想想更新…
[学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(DP\),顾名思义就是利用斜率相关性质对 \(DP\) 进行优化. 斜率优化通常可以由两种方式来理解,需要灵活地运用数学上的数形结合,线性规划思想. 对于这样形式的 \(dp\) 方程:\(dp[i]=Min/Max(a[i]∗b[j]+c[j]+d[i])\),其中 \(b\) 严格单调递增. 该方…
剑指 Offer 60. n个骰子的点数 Offer_60 题目详情 题解分析 package com.walegarrett.offer; /** * @Author WaleGarrett * @Date 2021/2/12 18:29 */ /** * 题目描述:把n个骰子扔在地上,所有骰子朝上一面的点数之和为s.输入n,打印出s的所有可能的值出现的概率. * 你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点数集合中第 i 小的那个的概率. */ impor…
2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS) https://www.luogu.com.cn/problem/P2501 题意: 现在我们有一个长度为 n 的整数序列 a.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. 求最小的改变次数和此时每个数改变的绝对值之和. 分析: 对于 \(a_i\) ,\(a_j\) , \(i<j\) ,当 \(j-i<=a_j-a_i\) 时 \(i\) 与…
对于1D/1D动态规划来说,理论时间复杂度都是O(n^2)的,这种动态规划一般都可以进行优化,贴一篇文章 https://wenku.baidu.com/view/e317b1020740be1e650e9a12.html 这里介绍最简单的一种,LIS的求法 其实就是二分,找单调性来二分 HDU1950是一道裸题 #include <iostream> #include<cstring> #include <algorithm> #define INF 0x3f3f3f…
HDU - 1160 给一些老鼠的体重和速度 要求对老鼠进行重排列,并找出一个最长的子序列,体重严格递增,速度严格递减 并输出一种方案 原题等于定义一个偏序关系 $(a,b)<(c.d)$ 当且仅当 $a<c,b>d$ 然后找出最长链 ...我们就按照他说的重新排个序,然后找LIS吧,不过还需要去路径还原 数据量可以用$O(n^2)$的算法 不过我这里用来$O(nlogn)$的算法加上一个路径还原 嗯,其实是在一个单调栈上乱搞的二分罢了.... 最后要回溯一下并且记录答案才行 #incl…
Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[i]=max{f[j]+cal(sum[i]-sum[j])} 其中j<i,且cal(x)=a*x*x+b*x+c 那么设转移方程中的式子为V 若i<j,且V(j)>V(i) 那么,f[j]-f[i]+a*sum[j]^2-a*sum[i]^2+b*(sum[i]-sum[j])>2*…
Description 农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000,000; 1 <= 长 <= 1,000,000). 每块土地的价格是它的面积,但FJ可以同时购买多快土地. 这些土地的价格是它们最大的长乘以它们最大的宽, 但是土地的长宽不能交换. 如果FJ买一块3x5的地和一块5x3的地,则他需要付5x5=25. FJ希望买下所有的土地,但是他发现分组来买这些…
优化链接 [https://blog.csdn.net/George__Yu/article/details/75896330] #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int a[10010]; int dp[10010]; //LIS int main() { int n; while(scanf("%d",&n)!=EOF…