halcon之NCC匹配】的更多相关文章

NCC匹配 基于Normalized cross correlation(NCC)用来比较两幅图像的相似程度已经是一个常见的图像处理手段.在工业生产环节检测.监控领域对对象检测与识别均有应用.NCC算法可以有效降低光照对图像比较结果的影响.而且NCC最终结果在0到1之间,所以特别容易量化比较结果,只要给出一个阈值就可以判断结果的好与坏.传统的NCC比较方法比较耗时,虽然可以通过调整窗口大小和每次检测的步长矩形部分优化,但是对工业生产检测然后不能达到实时需求,通过积分图像实现预计算,比较模板图像与…
注:很抱歉,忘记从转载链接了,作者莫怪.... 基于HALCON的模板匹配方法总结 很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总是抽不出时间.去年有过一段时间的集中学习,做了许多的练习和实验,并对基于HDevelop的形状匹配算法的参数优化进行了研究,写了一篇<基于HDevelop的形状匹配算法参数的优化研究>文章,总结了在形状匹配过程中哪些参数影响到模板的搜索和匹配,又如何来协调这些参数来加快匹配过程,提高匹配的精度,这篇paper放到了中国论文在线了,需要可以去下载.…
转载链接:     http://blog.csdn.net/b108074013/article/details/37657801 很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总是抽不出时间.去年有过一段时间的集中学习,做了许多的练习和实验,并对基于HDevelop的形状匹配算法的参数优化进行了研究,写了一篇<基于HDevelop的形状匹配算法参数的优化研究>文章,总结了在形状匹配过程中哪些参数影响到模板的搜索和匹配,又如何来协调这些参数来加快匹配过程,提高匹配的精度,这…
很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总是抽不出时间.去年有过一段时间的集中学习,做了许多的练习和实验,并对基于HDevelop的形状匹配算法的参数优化进行了研究,写了一篇<基于HDevelop的形状匹配算法参数的优化研究>文章,总结了在形状匹配过程中哪些参数影响到模板的搜索和匹配,又如何来协调这些参数来加快匹配过程,提高匹配的精度,这篇paper放到了中国论文在线了,需要可以去下载. 德国MVTec公司开发的HALCON机器视觉开发软件,提供了许多的功能,在这里我主…
基于组件的模板匹配: 应用场合:组件匹配是形状匹配的扩展,但不支持大小缩放匹配,一般用于多个对象(工件)定位的场合. 算法步骤: 1.获取组件模型里的初始控件 gen_initial_components() 参数: ModelImage [Input] 初始组件的图片 InitialComponents [Output] 初始组件的轮廓区域 ContrastLow [Input] 对比度下限 ContrastHigh [Input] 对比度上限 MinSize [Input] 初始组件的最小尺…
halcon有三种模板匹配方法:即Component-Based.Gray-Value-Based.Shaped_based,分别是基于组件(或成分.元素)的匹配,基于灰度值的匹配和基于形状的匹配,此外还有变形匹配和三维模型匹配也是分属于前面的大类 本文只对形状匹配做简要说明和补充: Shape_Based匹配方法: 上图介绍的是形状匹配做法的一般流程及模板制作的两种方法. 先要补充点知识:形状匹配常见的有四种情况 一般形状匹配模板shape_model.线性变形匹配模板planar_defor…
引言 机器视觉中缺陷检测分为一下几种: blob分析+特征 模板匹配(定位)+差分 光度立体:halcon--缺陷检测常用方法总结(光度立体) - 唯有自己强大 - 博客园 (cnblogs.com) 特征训练 测量拟合 频域+空间域结合:halcon--缺陷检测常用方法总结(频域空间域结合) - 唯有自己强大 - 博客园 (cnblogs.com) 深度学习 本篇主要总结一下缺陷检测中的定位+差分的方法.即用形状匹配,局部变形匹配去定位然后用差异模型去检测缺陷. 模板匹配(定位)+差分 整体思…
14.1  Access 1. get_region_chain 功能:一个对象的轮廓(contour)作为链式码. 2. get_region_contour 功能:查询一个目标的轮廓(contour). 3. get_region_convex 功能:查询突起的外表作为轮廓(contour). 4. get_region_points 功能:查询一个区域的像素数. 5. get_region_polygon 功能:用一个多边形近似获取区域. 6. get_region_runs 功能:查询一…
归一化相关性,normalization cross-correlation,因此简称NCC,下文中笔者将用NCC来代替这冗长的名称. NCC,顾名思义,就是用于归一化待匹配目标之间的相关程度,注意这里比较的是原始像素.通过在待匹配像素位置p(px,py)构建3*3邻域匹配窗口,与目标像素位置p'(px+d,py)同样构建邻域匹配窗口的方式建立目标函数来对匹配窗口进行度量相关性,注意这里构建相关窗口的前提是两帧图像之间已经校正到水平位置,即光心处于同一水平线上,此时极线是水平的,否则匹配过程只能…
最近研究了一下opencv的 MorphologyEx这个函数的替代功能, 他主要的特点是支持任意形状的腐蚀膨胀,对于灰度图,速度基本和CV的一致,但是 CV没有针对二值图做特殊处理,因此,这个函数对二值图的速度和灰度是一样的,但是这个函数,如果使用的话,估计大部分还是针对二值图像,因此,我对二值图做了特别优化,速度可以做到是CV这个函数的4倍左右. MorphologyEx的主要功能是对灰度图进行相关形态学的处理,比如腐蚀.膨胀.开闭等计算,其代码可以在github上找到:https://gi…
模板匹配是机器视觉工业现场中较为常用的一种方法,常用于定位,就是通过算法,在新的图像中找到模板图像的位置.例如以下两个图像.   这种模板匹配是最基本的模板匹配.其特点只是存在平移旋转,不存在尺度变化,同时光照变化不大.这样很适合常规的灰度模板匹配.但是利用opencv不太好解决角度的问题,同时速度上也达不到工业需求,因此,halcon的用途就来了.下面我详细介绍模板匹配的过程: 1 首先是选择区域.也就是ROI.我们先建一个矩形区域,以矩形的中点作为参考点. //矩形区域 gen_rectan…
愿意写代码的人一般都不太愿意去写文章,因为代码方面的艺术和文字中的美学往往很难兼得,两者都兼得的人通常都已经被西方极乐世界所收罗,我也是只喜欢写代码,让那些字母组成美妙的歌曲,然后自我沉浸在其中自得其乐.而今天,在清明之际,在踏青时节,我还是忍不住停下来歇歇脚,稍微共享一下最近一直研究的一个非常基础的算法和应用 - 多目标多角度的模板匹配. 模板匹配,这是一个几十年来一直为业界所重点研究和处理的算法,存在于各种不同的机器视觉库中,如果哪一个没有提供这个功能,那么他将无法获取大家的认可,也就失去了…
在机器视觉应用中,经常需要对图像进行仿射变换.1.在基于参考的视觉检测中,由于待检图像与参考图像或多或少都会存在几何变化(平移.旋转.缩放等),所以在做比较之前一般都要对待检图像进行仿射变换以对齐图像.2.要进行仿射变换,必须先获取变换矩阵,形状匹配是获取变换矩阵的一种高效的方法.3.Halcon的如下几个函数是专门用于计算变换矩阵的:vector_angle_to_rigid :Compute a rigid affine transformation from points and angl…
HDevelop开发环境中提供的匹配的方法主要有三种,即Component-Based.Gray-Value-Based.Shape-Based,分别是基于组件(或成分.元素)的匹配,基于灰度值的匹配和基于形状的匹配. 这三种匹配的方法各具特点,分别适用于不同的图像特征,但都有创建模板和寻找模板的相同过程.这三种方法里面,我主要就第三种-基于形状的匹配,做了许多的实验,因此也做了基于形状匹配的物体识别,基于形状匹配的视频对象分割和基于形状匹配的视频对象跟踪这些研究,从中取得较好的效果,简化了用其…
halcon软件最高效的一个方面在于模板匹配,号称可以快速进行柔性模板匹配,能够非常方便的用于缺陷检测.目标定位.下面以一个简单的例子说明基于形状特征的模板匹配.      为了在右图中,定位图中的三个带旋转箭头的圆圈.注意存在,位置.旋转和尺度变化. 上halcon程序 * This example program shows how to find scaled and rotated shape models. dev_update_pc ('off') dev_update_window…
在日常工程应用中,我们通常通过halcon的 shape-based matching(形状匹配)进行各种定位, 如以前文章介绍的这样,理解各个参数并灵活应用通常就能得到很好的匹配效果和匹配速度, 当待匹配物体有轻微变形时,并不影响得到的匹配结果,然后当待匹配物体有较大变形时,如 塑料产品在成形时变形.纺织产品的花纹因为褶皱变形等,要想得到精确的定位结果就显得捉襟见肘,   如下图所示,印刷品有较大变形,在用shape-based matching时,定位结果就不尽如人意,因为 shape-ba…
********************************模板匹配 ********************create_shape_model创建模板,这个函数有许多参数,其中金字塔的级数由Numlevels指定,值越大则找到物体的时间越少,AngleStart和AngleExtent决定可能的旋转范围,AngleStep指定角度范围搜索的步长:这里需要提醒的是,在任何情况下,模板应适合主内存,搜索时间会缩短.对特别大的模板,用Optimization来减少模板点的数量是很有用的:Min…
HALCON形状匹配讲解 https://blog.csdn.net/linnyn/article/details/50663328 https://blog.csdn.net/u014608071/article/details/78564596 2016年02月14日 16:09:40 赵一一 阅读数:18149   很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总是抽不出时间.去年有过一段时间的集中学习,做了许多的练习和实验,并对基于HDevelop的形状匹配算法的参数优…
目录 一.立体匹配算法 1.立体匹配算法分类 二.NCC 视差匹配方法 1.原理 2.NCC计算公式 3.算法流程 4.代码实现     5.不同场景运行 三.结论 四.遇到的问题及解决方法 一.立体匹配算法 1.立体匹配算法分类 在立体匹配中,匹配问题可以看成是寻找两组数据相关程度的过程.根据采用图像表示的基元不同,立体匹配算法有多种分类. ①根据算法运行时约束的作用范围:分为局部匹配算法和全局匹配算法. ②基于生成的视差图:可分为稠密匹配和稀疏匹配.稠密匹配:是基于生成的视差图,对于所有像素…
模板图片:目标是获取图像左上角位置的数字 直接想法,直接用一个框将数字框出来,然后对图片进行模板匹配(不可行,因为图像中的数字不是固定的) 所以需要选择图像中的固定不变的区域来作为模板,然后根据模板区域来找到我们的目标区域,案例以左上角的商标名称作为模板区域 代码:案例图片在C:\Users\HJ\AppData\Roaming\MVTec\HALCON-21.05-Progress\examples\images\blister(根据自己安装halcon的位置来寻找) *读取模板图片,了解目标…
工业中模板匹配有很多需求. 代码如下: read_image (Image, 'J:/测试图片/test1/1.bmp') get_image_size (Image, Width, Height) gen_rectangle1 (Rectangle, 1057.01, 1698.27, 1241.98, 1898.29) *gen_rectangle1 (Rectangle, 449.726, 813.267, 669.604, 1005.06) area_center (Rectangle,…
LIntExport Herror create_shape_model( const Hobject&  Template ,  //reduce_domain后的模板图像 Hlong  NumLevels,  //金字塔的层数,可设为“auto”或0—10的整数 Double  AngleStart,  //模板旋转的起始角度 Double  AngleExtent,  //模板旋转角度范围, >=0 Double  AngleStep,  //旋转角度的步长, >=0 and &…
find_shape_model(Image : :  //搜索图像 ModelID, //模板句柄 AngleStart,  // 搜索时的起始角度 AngleExtent, //搜索时的角度范围,必须与创建模板时的有交集 MinScore, //最小匹配值,输出的匹配的得分Score 大于该值 NumMatches, //定义要输出的匹配的最大个数 MaxOverlap, //当找到的目标存在重叠时,且重叠大于该值时选择一个好的输出 SubPixel, //计算精度的设置,五种模式,多选2,…
create_shape_model(Template : : //reduce_domain后的模板图像 NumLevels,//金字塔的层数,可设为“auto”或0—10的整数 AngleStart,//模板旋转的起始角度 AngleExtent,//模板旋转角度范围, >=0 AngleStep,//旋转角度的步长, >=0 and <=pi/16 Optimization,//设置模板优化和模板创建方法 Metric, //匹配方法设置 Contrast,//设置对比度 MinC…
halcon的算子列表   Chapter 1 :Classification 1.1 Gaussian-Mixture-Models 1.add_sample_class_gmm 功能:把一个训练样本添加到一个高斯混合模型的训练数据上. 2.classify_class_gmm 功能:通过一个高斯混合模型来计算一个特征向量的类. 3. clear_all_class_gmm 功能:清除所有高斯混合模型. 4. clear_class_gmm 功能:清除一个高斯混合模型. 5. clear_sa…
<zw版·Halcon-delphi系列原创教程> Halcon分类函数007, match,图像匹配 为方便阅读,在不影响说明的前提下,笔者对函数进行了简化: :: 用符号“**”,替换:“procedure” :: 用大写字母“X”,替换:“IHUntypedObjectX” :: 省略了字符:“const”.“OleVariant” [示例] 说明 函数: procedure AddNoiseWhiteContourXld( const Contours: IHUntypedObject…
<zw版·Halcon-delphi系列原创教程> Halcon分类函数006, image,影像处理(像素图) 为方便阅读,在不影响说明的前提下,笔者对函数进行了简化: :: 用符号“**”,替换:“procedure” :: 用大写字母“X”,替换:“IHUntypedObjectX” :: 省略了字符:“const”.“OleVariant” [示例] 说明 函数: procedure AddNoiseWhiteContourXld( const Contours: IHUntypedO…
Chapter 1 :Classification 1.1 Gaussian-Mixture-Models 1.add_sample_class_gmm 功能:把一个训练样本添加到一个高斯混合模型的训练数据上. 2.classify_class_gmm 功能:通过一个高斯混合模型来计算一个特征向量的类. 3. clear_all_class_gmm 功能:清除所有高斯混合模型. 4. clear_class_gmm 功能:清除一个高斯混合模型. 5. clear_samples_class_gm…
<zw版·delphi与halcon系列原创教程>zw版_THOperatorSetX控件函数列表v11中文增强版 Halcon虽然庞大,光HALCONXLib_TLB.pas文件,源码就要7w多行,但核心控件就是两个: THImagex,图像数据控件,v11版,包括488个函数和子程序 THOperatorSetX,操作主接口控件,v11版,包括1929个子程序 以上两大核心控件,已经删除个别delphi内部属性函数,不影响日常使用. 其他控件,基本上,都是为配合两个控件,提供数据类型支持.…
上一篇主要介绍了图像拼接的一些原理和方法,这一篇将主要介绍步骤和例程: 接上一篇: 基于特征的接拼方法,分为四个步骤 1.特征检测:从图像中检测出显著且独特的图像特征,诸如:闭合区域,直线段,边缘,轮廓,点等. 2.特征匹配:从相似度确定图像之间特征的对应关系,又分为如下几类: 2.1:使用空域关系的方法 2.2:使用不变描述符的方法 2.3:松弛方法 2.4:金字塔和小波方法 3.变换模型的估计:变换函数选择和函数参数估计 4.图像变换和重采样:可以通过前向或后向的方式来实现,插值的方法有最近…