一.前言及思路简析 目前车牌识别系统在各小区门口随处可见,识别效果貌似都还可以.查阅资料后,发现整个过程又可以细化为车牌定位.畸变校正.车牌分割和内容识别四部分.本篇随笔主要介绍车牌定位及畸变校正两部分,在python环境下通过opencv实现. 1.1 车牌定位 目前主流的车牌定位方法从大的方面来说可以分为两类:一种是基于车牌的背景颜色特征:另一种基于车牌的轮廓形状特征.基于颜色特征的又可分为两类:一种在RGB空间识别,另一种在HSV空间识别.经测试后发现,单独使用任何一种方法,效果均不太理想…
接着上面的工作,接下去就该是进行字符分割了.考虑到为了后面的字符识别,因此在这部分需要实现的目标是需要把车牌的边框全部切除,对重新定位的车牌进行垂直方向水平方向调整,保证字符是正的.最后才是字符的分割. 1.首先上下边框切割.对定位的车牌每行作一次的差分,计算每行的综合,小于某个阈值时候将其舍去.部分代码: [length height]=size(p); % 水平方向定位 :length % 水平一阶差分 :height- revise_row(i,j)=abs(p(i,j)-p(i,j+))…
这篇文章是一个系列中的第三篇.前两篇的地址贴下:介绍.详解1.我撰写这系列文章的目的是:1.普及车牌识别中相关的技术与知识点:2.帮助开发者了解EasyPR的实现细节:3.增进沟通. EasyPR的项目地址在这:GitHub.要想运行EasyPR的程序,首先必须配置好openCV,具体可以参照这篇文章. 在前两篇文章中,我们已经初步了解了EasyPR的大概内容,在本篇内容中我们开始深入EasyRP的程序细节.了解EasyPR是如何一步一步实现一个车牌的识别过程的.根据EasyPR的结构,我们把它…
文章英文原网址: http://www.gamasutra.com/blogs/BrianKehrer/20160125/264161/VR_Distortion_Correction_using_Vertex_Displacement.php 利用顶点位移的VR畸变校正 2016年1月29日 Brian Kehren著 在VR开发的最大挑战之一是对高帧率与高分辨率结合的要求.我们通过把顶点转化为“镜头空间”,删除了需要全屏渲染的纹理,这样就可以大规模提高手机性能. 下面的技术使用谷歌的Card…
第四篇:车牌定位 车牌定位就是采用一系列图像处理或者数学的方法从一幅图像中将车牌准确地定位出来.车牌定位提取出的车牌是整个车牌识别系统的数据来源,它的效果的好坏直接影响到整个系统的表现,只有准确地定位出车牌,才会有后续的车牌分割与字符识别. 目前车牌定位有两大类.基于灰度.基于彩色. 基于灰度: 我们采用的是基于灰度的形态学的车牌定位:首先根据车牌区域中丰富的纹理特征,提取车牌图像中垂直方向的边缘并二值化.然后对得到的二值图像进行数学形态学(膨胀.腐烛.幵闭运算等)的运算,使得车牌区域形成一个闭…
http://blog.csdn.net/superdont/article/details/24935383 OpenCV使用边缘提取.腐蚀.轮廓进行车牌定位 2014-05-03 21:38 6786人阅读 评论(2) 收藏 举报  分类: opencv(24)  版权声明:本文为博主原创文章,未经博主允许不得转载. 采用OpenCV249利用边缘检测.轮廓检测.腐蚀实现的车牌定位,具体为: Mat srcImage=imread("image/000.jpg"); //imsho…
上一篇博客简要介绍了一下常用的张正友标定法的流程,其中获取了摄像机的内参矩阵K,和畸变系数D. 1.在普通相机cv模型中,畸变系数主要有下面几个:(k1; k2; p1; p2[; k3[; k4; k5; k6]] ,其中最常用的是前面四个,k1,k2为径向畸变系数,p1,p2为切向畸变系数. 2.在fisheye模型中,畸变系数主要有下面几个(k1,k2,k3,k4). 因为cv和fisheye的镜头畸变模型不一样,所以畸变系数也会有所不同,具体在畸变校正时的公式也不同,具体公式请参见ope…
图像算法中会经常用到摄像机的畸变校正,有必要总结分析OpenCV中畸变校正方法,其中包过普通针孔相机模型和鱼眼相机模型fisheye两种畸变校正方法. 普通相机模型畸变校正函数针对OpenCV中的cv::initUndistortRectifyMap(),鱼眼相机模型畸变校正函数对应OpenCV中的cv::fisheye::initUndistortRectifyMap().两种方法算出映射Mapx和Mapy后,统一用cv::Remap()函数进行插值得到校正后的图像. 1. FishEye模型…
一.简介 sobel算子主要是用于获得数字图像的一阶梯度,常见的应用是边缘检测. Ⅰ.水平变化: 将 I 与一个奇数大小的内核进行卷积.比如,当内核大小为3时, 的计算结果为: Ⅱ.垂直变化: 将: I 与一个奇数大小的内核进行卷积.比如,当内核大小为3时, 的计算结果为: Opencv中Sobel函数使用扩展的Sobel算子,来计算一阶.二阶.三阶或混合图像差分. CV_EXPORTS_W , , int borderType=BORDER_DEFAULT ); 第一个参数,InputArra…
上一篇主要介绍了车牌识别的整体框架和流程,车牌识别主要划分为了两个过程:即车牌检测和字符识别,而车牌识别的核心环节就是这一节主要介绍的车牌定位,即 Plate Locate.车牌定位主要是将图片中有可能是车牌的区域定位出来,方便后面进一步的处理.测试代码如下: int test_plate_locate() { cout << "test_plate_locate" << endl; const string file = "resources/ima…