首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
【神经网络与深度学习】如何将别人训练好的model用到自己的数据上
】的更多相关文章
【神经网络与深度学习】如何将别人训练好的model用到自己的数据上
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分类,但样本量太小,可能只有几百张,而一般深度学习都要求样本量在1万以上,因此训练出来的model精度太低,根本用不上,那怎么办呢? 那就用caffe团队提供给我们的model吧. 因为训练好的model里面存放的就是一些参数,因此我们实际上就是把别人预先训练好的参数,拿来作为我们的初始化参数,而不需…
Caffe学习系列(23):如何将别人训练好的model用到自己的数据上
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分类,但样本量太小,可能只有几百张,而一般深度学习都要求样本量在1万以上,因此训练出来的model精度太低,根本用不上,那怎么办呢? 那就用caffe团队提供给我们的model吧. 因为训练好的model里面存放的就是一些参数,因此我们实际上就是把别人预先训练好的参数,拿来作为我们的初始化参数,而不需…
【神经网络与深度学习】【CUDA开发】【VS开发】Caffe+VS2013+CUDA7.5+cuDNN配置过程说明
[神经网络与深度学习][CUDA开发][VS开发]Caffe+VS2013+CUDA7.5+cuDNN配置过程说明 标签:[Qt开发] 说明:这个工具在Windows上的配置真的是让我纠结万分,大部分都是基于Linux下进行的部署,但是Linux只是跑在虚拟机中,只为了开发ARM-Linux的人,你不会想着去在虚拟机里配置Caffe的.所以,迫不得已必须在Windows上部署,于是从BVLC下载,试着用CMAKE生成本地的VS2010工程,当然之前已经部署过CUDA7.5 toolkit了,但是…
(转)神经网络和深度学习简史(第一部分):从感知机到BP算法
深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chenxiaoqing.范娜Fiona.杨超.微胖.汪汪.赵巍 导读:这是<神经网络和深度学习简史>第一部分.这一部分,我们会介绍1958年感知机神经网络的诞生,70年代人工智能寒冬以及1986年BP算法让神经网络再度流行起来. 深度学习掀起海啸 如今,深度学习浪潮拍打计算机语言的海岸已有好几年,但是,…
[DeeplearningAI笔记]神经网络与深度学习人工智能行业大师访谈
觉得有用的话,欢迎一起讨论相互学习~Follow Me 吴恩达采访Geoffrey Hinton NG:前几十年,你就已经发明了这么多神经网络和深度学习相关的概念,我其实很好奇,在这么多你发明的东西中,哪些你到现在为止依然保持有热情的. Hinton:我认为我觉得最具学术之美的是受限Boltzmann机器,我们认为他能用很简单很简单的算法去应用到密度很高的连接起来的网络. Hinton:我仍然认为无监督学习十分重要,当我们真正搞明白一些东西以后,结果会比现在好很多.不过目前并没有找到这种方法.…
【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验【中英】
[吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和“AI是新电力”相类似的说法是什么? [ ]AI为我们的家庭和办公室的个人设备供电,类似于电力. [ ]通过“智能电网”,AI提供新的电能. [ ]AI在计算机上运行,并由电力驱动,但是它正在让以前的计算机不能做的事情变为可能. [★]就像100年前产生电能一样,AI正在改变很多的行业. 请注意: 吴恩达在视频中表达了同样的观点. 哪些是深度学习快速发展的原因? (两个选项…
如何理解归一化(Normalization)对于神经网络(深度学习)的帮助?
如何理解归一化(Normalization)对于神经网络(深度学习)的帮助? 作者:知乎用户链接:https://www.zhihu.com/question/326034346/answer/730051338来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 回顾一下围绕normalization的一些工作(由最新到最旧的BatchNorm): 2019,Weight Standardization(没有发表,但是有大佬Alan Yuille加持) Weight…
【神经网络与深度学习】卷积神经网络(CNN)
[神经网络与深度学习]卷积神经网络(CNN) 标签:[神经网络与深度学习] 实际上前面已经发布过一次,但是这次重新复习了一下,决定再发博一次. 说明:以后的总结,还应该以我的认识进行总结,这样比较符合我认知的习惯,而不是单纯的将别的地方的知识复制过来,这样并起不到好的总结效果.相反,如果能够将自己的体会写下来,当有所遗忘时还能顺着当时总结的认识思路,重新"辨识"起来,所以,要总结,而不要搬运知识. 起初并不理解卷积神经的卷积与结构是什么,后来通过了一个比较好的例子才对卷积神经网络有了初…
【神经网络与深度学习】【Qt开发】【VS开发】从caffe-windows-visual studio2013到Qt5.7使用caffemodel进行分类的移植过程
[神经网络与深度学习][CUDA开发][VS开发]Caffe+VS2013+CUDA7.5+cuDNN配置成功后的第一次训练过程记录<二> 标签:[神经网络与深度学习] [CUDA开发] [VS开发] 紧着上一篇,我在windows上备份了三个版本的Caffe库以及visual studio 13的编译工程,主要当时是一步一步来的,想着先是only cpu,然后是支持cuda,最后是并入cuDNN.当我意识到程序要支持在没有GPU的设备上运行时,需要有不同的选择.这里主要记录关于三种不同的配置…
Deeplearning.ai课程笔记-神经网络和深度学习
神经网络和深度学习这一块内容与机器学习课程里Week4+5内容差不多. 这篇笔记记录了Week4+5中没有的内容. 参考笔记:深度学习笔记 神经网络和深度学习 结构化数据:如数据库里的数据 非结构化数据:hard to understand:如图像.文本 一. 深度学习的优势 算法.硬件计算能力的提高使神经网络运行速度变快 大数据(带labels的)使得神经网络精确度更高 在数据集不多的时候深度学习的优势并不是很明显,但是在大数据的情况下,辅助以好的算法和强计算能力,会使神经网络的运行速度和精确…