一.模型表示 1.一些术语 如下图,房价预测.训练集给出了房屋面积和价格,下面介绍一些术语: x:输入变量或输入特征(input variable/features). y:输出变量或目标变量(output variable/target variable). (x, y):一个训练样本 (x(i), y(i)):第i个训练样本 m:样本数目 2.机器学习的一般过程 如图,机器学习算法通过学习训练集得出假设函数h(Hypothesis),然后接受输入x,输出y.假设函数h称为模型. 3.线性回归…
在监督学习中我们有一个数据集,这个数据集被称训练集.…
我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 1.  单变量线性回归 Linear Regression with One Variable  1. 代价函数Cost Function  在单变量线性回归中,已知有一个训练集有一些关于$x$.$y$的数据(如×所示),当我们的预测值$h(x)$…
二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下降的直观理解 2.6  梯度下降的线性回归 2.7  接下来的内容 2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m                代表训练集中实例的数量 x          …
二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 II 2.5  梯度下降 2.6  梯度下降的直观理解 2.7  梯度下降的线性回归 2.8  接下来的内容 2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示:…
单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法(取自 百度百科). 例如:现在有一堆散乱的点,想找出一个一元一次方程来让这些点的分布误差最小(就是找出一条最合适的直线来贯穿这些点). 图中红色直线就是我们需要找的线.这条直线的表示为: y=ax+b.那么找出a.b这两个变量最合适的值就叫线性回归. 在图片中,蓝色的点用(xi,yi)来表示.m…
面积与房价 训练集 (Training Set) Size       Price 2104       460 852         178 ...... m代表训练集中实例的数量x代表输入变量 y代表输出变量 (x,y)代表训练集中的实例 h代表方案或者假设        h =  a x + b 输入变量输入给h  得到输出结果 因为只有一个特征   所以是单变量线性回归问题 a b就是代价参数    求ab就是建模    ab算完和实际的差距叫建模误差 寻找ab平方和最小点  就是代价…
本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation (8 min).mkv 本课程讲解的第一个算法为"回归算法",本节将要讲解到底什么是Model.下面,以一个房屋交易问题为例开始讲解,如下图所示(从中可以看到监督学习的基本流程). 所使用的数据集为俄勒冈州波特兰市的住房价格,根据数据集中的不同房屋尺寸所对应的出售价格,绘制出了数据集:假如…
所谓的单变量线性回归问题就是监督学习的一部分. 通过构建数学模型给出一个相对准确的数值,也就是预测模型,通过将数据通过数学模型,衍生至回归问题 通过以下的几个例子,我们来研究单变量线性回归. 1.王阿姨由于刚来本地时间不久,对本地海鲜市场螃蟹的价格并不了解,所以王阿姨的儿子为王阿姨建立了单变量线性回归的数学模型 从这张图片来看,王阿姨所需要的螃蟹价格回归模型明显和准确的显示出当地价格的数学模型. 2.某学校为当地同学买球鞋,各地价格不一样,所以采用了线性回归的办法来估测同学们此次卖运动鞋所化的费…
2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m                代表训练集中实例的数量   x                 代表特征/输入变量 y                 代表目标变量/输出变量 (x,y)            代表训练集中的实例 (x(i),y(i)  )    代表第 i 个观察实例 h                代表学习算法的解决方案或…
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
1 线性回归算法 http://www.cnblogs.com/wangxin37/p/8297988.html 回归一词指的是,我们根据之前的数据预测出一个准确的输出值,对于这个例子就是价格,回归=预测,同时,还有另一种最常见的监督学习方式,叫做分类问题,当我们想要预测离散的输出值,例如,我们正在寻找癌症肿瘤,并想要确定肿瘤是良性的还是恶性的,这就是0/1离散输出的问题.更进一步来说,在监督学习中我们有一个数据集,这个数据集被称训练集. 我们将要用来描述这个回归问题的标记如下: mm代表训练集…
    最近开始看斯坦福的公开课<Machine Learning>,对其中单参数的Linear Regression(未涉及Gradient Descent)做个总结吧. [设想]     最近想要租房,收集了一些信息,得知房价与房间大小有关,那成本函数就可以预测在不同房间大小下租房的价格(PS:价格可能也与该房地理有关,那若把大小和距离市中心距离一并考虑,则属于多参数的线性回归) [数据]     1.准备一个ex1data1.txt,第一列为年龄,第二列为价格     2.导入matla…
在分类问题中,你要预测的变量…
一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌,如下: 二.单变量线性回归 绘制图形:rx代表图形中标记的点为红色的x,数字10表示标记的大小. plot(x, y, ); % Plot the data 计算代价函数(Cost Funtion):迭代次数1500,学习速率0.01.  iterations = 1500; alpha = 0.…
[Python]机器学习之单变量线性回归 利用正规方程找到合适的参数值 本次作业来自吴恩达机器学习. 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方),数据中包括不同的城市人口数和该城市带来的利润.第一列是城市的人口数,第二列是在这个城市开店所带来的利润数. 现在,求最合适的θ0和θ1,利用Normal Equation 即正规方程式 计算方法: θ = (XT * X)-1 * XT * Y 所以写出函数 def normalEquation(X,Y): re…
[Python]机器学习之单变量线性回归 利用批量梯度下降找到合适的参数值 本题目来自吴恩达机器学习视频. 题目: 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方),数据中包括不同的城市人口数和该城市带来的利润.第一列是城市的人口数,第二列是在这个城市开店所带来的利润数. 现在,假设一开始θ0和θ1都是0,利用梯度下降的方法,找到合适的θ值,其中学习速率α=0.01,迭代轮次为1000轮 上一个文章里,我们得出了CostFunction,即损失函数. 现在我们需…
一.初识机器学习 何为机器学习?A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.理解:通过实验E,完成某一项任务T,利用评价标准P对实验结果进行迭代优化! 机器学习主要包括监督学习…
注:练习来自于吴恩达机器学习 翻译后的题目: 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方),数据中包括不同的城市人口数和该城市带来的利润.第一列是城市的人口数,第二列是在这个城市开店所带来的利润数. 现在,假设θ0和θ1都是0,计算CostFunction,即计算损失函数 首先,本题线性回归的公式应该是这样的: H(θ) = θ0 + θ1*X 简单的来说,本题中,θ0和θ1都为0,即求H(θ) = 0的损失值, 然后我们再给出损失的定义: 损失,通俗的来讲…
一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌,如下: 二.单变量线性回归 绘制图形:rx代表图形中标记的点为红色的x,数字10表示标记的大小. plot(x, y, ); % Plot the data 计算代价函数(Cost Funtion):迭代次数1500,学习速率0.01.  iterations = 1500; alpha = 0.…
线性回归属于回归问题.对于回归问题,解决流程为: 给定数据集中每个样本及其正确答案,选择一个模型函数h(hypothesis,假设),并为h找到适应数据的(未必是全局)最优解,即找出最优解下的h的参数.这里给定的数据集取名叫训练集(Training Set).不能所有数据都拿来训练,要留一部分验证模型好不好使,这点以后说.先列举几个几个典型的模型: 最基本的单变量线性回归: 形如h(x)=theta0+theta1*x1 多变量线性回归: 形如h(x)=theta0+theta1*x1+thet…
Week 1 机器学习笔记(一)基本概念与单变量线性回归 Week 2   机器学习笔记(二)多元线性回归 机器学习作业(一)线性回归——Matlab实现 机器学习作业(一)线性回归——Python(numpy)实现 Week 3   机器学习笔记(三)逻辑回归 机器学习作业(二)逻辑回归——Matlab实现 机器学习作业(二)逻辑回归——Python(numpy)实现 Week 4   机器学习笔记(四)神经网络的基本概念 机器学习作业(三)多类别分类与神经网络——Matlab实现 机器学习作…
1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始.这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住房价格.在这里,我要根据不同房屋尺寸所售出的价格,画出我的数据集: 我们来看这个数据集,如果你有一个朋友正想出售自己的房子,如果你朋友的房子是1250平方尺大小,你要告诉他们这房子能卖多少钱. 那么,你可以做的一件事就是构建一个模型,也许是条直线.从这个数据模型上来看,也许你可以告诉你的朋友,他大概…
吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Regression with One Variable Linear Algebra Review Linear Regression with Multiple Variables Octave/Matlab Tutorial…
我们从上一篇博客中知道了关于单变量线性回归的相关问题,例如:什么是回归,什么是代价函数,什么是梯度下降法. 本节我们讲一下多变量线性回归.依然拿房价来举例,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x0 ,x1 ,...,xn ). 增添更多特征后,我们引入一系列新的注释: 假设函数 h 表示为: 这个公式中有 n+1个参数和 n 个变量,为了使得公式能够简化一些,引入x0 = 1,则公 式转化为: 此时模型中的参数是一个 n+1维 的向量,…
一.多变量线性回归问题(linear regression with multiple variables) 搭建环境OctaveWindows的安装包可由此链接获取:https://ftp.gnu.org/gnu/octave/windows/,可以选择一个比较新的版本进行安装,本人win10操作系统,安装版本4.2.1,没有任何问题.注意不要安装4.0.0这个版本.当然安装MATLAB也是可以的,我两个软件都安装了,在本课程中只使用Octave就已经足够用了! 符号标记:n(样本的特征数/属…
监督学习(supervised learning) 假设我们有一个数据集(dataset),给出居住面积和房价的关系如下: 我们以居住面积为横坐标,房价为纵坐标,组成数据点,如(2104, 400),并把这些数据点描到坐标系中,如下: 由这些数据,我们怎么才能预测(predict)其他房价呢?其中房价作为居住面积的函数. 为了方便描述,我们用x(i)表示输入变量(即居住面积),也叫做输入特征(features):同时,用y(i)表示输出(即房价),也叫做目标(target)变量.有序对   (x…
[1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果.监督学习的训练集要求包括输入输出,也可以说是特征和目标.训练集中的目标是由人标注的.常用于:训练神经网络.决策树.回归分析.统计分类 无监督学习:输入数据没有被标记,也没有确定的结果.样本数据类别未知,需要根据样本间的相似性对样本集进行分类,试图使类内差距最小化,…
主要内容: 一.模型简介 二.一些变量所代表的含义 三.代价函数 四.Forward Propagation 五.Back Propagation 六.算法流程 待解决问题: 视频中通过指出:当特征变多时(或者非线性),利用logistic回归模型解决问题将导致计算量很大,即算法复杂度很高.然后就此引出神经网路,所以说神经网路在解决多特征(或者非线性)问题上是比logistic回归更优的.但为什么呢?有什么合理的解释? 一.模型简介 1.最简单的神经网络就是只有输入层和输出层: 2.稍微复杂一点…