回望2017,基于深度学习的NLP研究大盘点 雷锋网 百家号01-0110:31 雷锋网 AI 科技评论按:本文是一篇发布于 tryolabs 的文章,作者 Javier Couto 针对 2017 年基于深度学习的自然语言处理研究进行了大盘点.雷锋网 AI 科技评论根据原文进行了编译. 在过去的几年里,深度学习(DL)架构和算法在诸如图像识别和语音处理等领域取得了世人瞩目的进步.然而在最开始的时候,深度学习在自然语言处理(Natural Language Processing, NLP)领域的…
转自:https://zhuanlan.zhihu.com/p/31921944 前言:行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术.广泛被认为是一个图像检索的子问题.给定一个监控行人图像,检索跨设备下的该行人图像. 在监控视频中,由于相机分辨率和拍摄角度的缘故,通常无法得到质量非常高的人脸图片.当人脸识别失效的情况下,ReID就成为了一个非常重要的替代品技术.ReID有一个非常…
深度学习与计算机视觉(12)_tensorflow实现基于深度学习的图像补全 原文地址:Image Completion with Deep Learning in TensorFlow by Brandon Amos 原文翻译与校对:@MOLLY && 寒小阳 (hanxiaoyang.ml@gmail.com) 时间:2017年4月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/70214565 声明:版权所有,转载请联系作…
每年由美国计算机协会(Association of Computing Machinery,简称ACM)计算机图形专业组举办的年会SIGGRAPH,是全球最负盛名的图形学和交互技术盛会.今年已经是这场图形学盛宴的第四十四届,本届大会于7月30日至8月3日在美国洛杉矶举行. 作为著名的好莱坞所在地,洛杉矶聚集了大量影视特效等工业界的从业人员,而SIGGRAPH正是工业界展示自己炫酷技术,以及和学术界交流的一个绝佳平台,所以SIGGRAPH组委会多次选择洛杉矶作为大会举办地. 除了像其它学术会议一样…
之前研究的CRF算法,在中文分词,词性标注,语义分析中应用非常广泛.但是分词技术只是NLP的一个基础部分,在人机对话,机器翻译中,深度学习将大显身手.这篇文章,将展示深度学习的强大之处,区别于之前用符号来表示语义,深度学习用向量表达语义.这篇文章的最大价值在于,为初学者指明了研究方向.下面为转载的原文:   在深度学习出现之前,文字所包含的意思是通过人为设计的符号和结构传达给计算机的.本文讨论了深度学习如何用向量来表示语义,如何更灵活地表示向量,如何用向量编码的语义去完成翻译,以及有待改进的地方…
原文链接:https://www.52ml.net/20287.html 这篇博文主要讲了深度学习在目标检测中的发展. 博文首先介绍了传统的目标检测算法过程: 传统的目标检测一般使用滑动窗口的框架,主要包括三个步骤: 利用不同尺寸的滑动窗口框住图中的某一部分作为候选区域: 提取候选区域相关的视觉特征.比如人脸检测常用的Harr特征:行人检测和普通目标检测常用的HOG特征等: 利用分类器进行识别,比如常用的SVM模型. 基于深度学习的目标检测分为两派: 基于区域提名的,如R-CNN.SPP-net…
目前最好的高动态范围(HDR)成像方法通常是先利用光流将输入图像对齐,随后再合成 HDR 图像.然而由于输入图像存在遮挡和较大运动,这种方法生成的图像仍然有很多缺陷.最近,腾讯优图和香港科技大学的研究者提出了一种基于深度学习的非光流 HDR 成像方法,能够克服动态场景下的大范围前景运动. 论文:Deep High Dynamic Range Imaging with Large Foreground Motions 论文链接:https://arxiv.org/abs/1711.08937 摘要…
目录 声学模型 GRU-CTC DFCNN DFSMN 语言模型 n-gram CBHG 数据集 本文搭建一个完整的中文语音识别系统,包括声学模型和语言模型,能够将输入的音频信号识别为汉字. 声学模型使用了应用较为广泛的递归循环网络中的GRU-CTC的组合,除此之外还引入了科大讯飞提出的DFCNN深度全序列卷积神经网络,也将引入阿里的架构DFSMN. 语言模型有传统n-gram模型和基于深度神经网络的CBHG网络结构,该结构是谷歌用于TTS任务中的tacotron系统,本文中将该系统部分结构移植…
基于深度学习的安卓恶意应用检测 from:http://www.xml-data.org/JSJYY/2017-6-1650.htm 苏志达, 祝跃飞, 刘龙     摘要: 针对传统安卓恶意程序检测技术检测准确率低,对采用了重打包和代码混淆等技术的安卓恶意程序无法成功识别等问题,设计并实现了DeepDroid算法.首先,提取安卓应用程序的静态特征和动态特征,结合静态特征和动态特征生成应用程序的特征向量:然后,使用深度学习算法中的深度置信网络(DBN)对收集到的训练集进行训练,生成深度学习网络:…