1. slim.arg_scope(函数, 传参) # 对于同类的函数操作,都传入相同的参数 from tensorflow.contrib import slim as slim import tensorflow as tf @slim.add_arg_scope # 进行修饰操作 def fun1(a=0, b=0): return a + b with slim.arg_scope([fun1], a=2): x = fun1(b=2) print(x)# 4 2. tf.name_sc…
持续监控GPU使用情况命令: $ watch -n 10 nvidia-smi1一.指定使用某个显卡如果机器中有多块GPU,tensorflow会默认吃掉所有能用的显存, 如果实验室多人公用一台服务器,希望指定使用特定某块GPU.可以在文件开头加入如下代码: import osos.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"os.environ["CUDA_VISIBLE_DEVICES"] = &qu…
多卡训练模式: 进行深度学习模型训练的时候,一般使用GPU来进行加速,当训练样本只有百万级别的时候,单卡GPU通常就能满足我们的需求,但是当训练样本量达到上千万,上亿级别之后,单卡训练耗时很长,这个时候通常需要采用多机多卡加速.深度学习多卡训练常见有两种方式,一种是数据并行化(data parallelism),另外一种是模型并行化(model parallelism). 深度模型训练方法: 深度学习模型的训练是一个迭代的过程,在每一轮迭代过程中,前向传播算法会根据当前参数的取值,计算出在一小部…
在GPU上训练数据 模型搬到GPU上 数据搬到GPU上 损失函数计算搬到GPU上…
缘由 最近一直在看深度学习的代码,又一次看到了slim.arg_scope()的嵌套使用,具体代码如下: with slim.arg_scope( [slim.conv2d, slim.separable_conv2d], weights_initializer=tf.truncated_normal_initializer( stddev=weights_initializer_stddev), activation_fn=activation_fn, normalizer_fn=slim.b…
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变化后的图片大小,0, 0表示dx和dy, cv2.INTER_LINEAR表示插值的方式为线性插值 2.image.get_shape[1:4].num_elements() 获得最后三个维度的大小之和 参数说明:image表示输入的图片 3. saver.save(sess, path, glob…
[https://blog.csdn.net/u013921430 转载] slim是一种轻量级的tensorflow库,可以使模型的构建,训练,测试都变得更加简单.在slim库中对很多常用的函数进行了定义,slim.arg_scope()是slim库中经常用到的函数之一.函数的定义如下: @tf_contextlib.contextmanager def arg_scope(list_ops_or_scope, **kwargs): """Stores the defaul…
之前写拷贝构造函数的时候,以为参数为引用,不为值传递,仅仅是为了减少一次内存拷贝.然而今天看到一篇文章发现自己对拷贝构造的参数理解有误. 参数为引用,不为值传递是为了防止拷贝构造函数的无限递归,最终导致栈溢出.     下面来看一个例子: class test { public: test() { cout << "constructor with argument\n"; } ~test() { } test(test& t) { cout << &q…
slim.arg_scope函数说明如下: Stores the default arguments for the given set of list_ops. For usage, please see examples at top of the file. Args: list_ops_or_scope: List or tuple of operations to set argument scope for or a dictionary containing the current…
由于最近想试一下牛掰的目标检测算法SSD.于是乎,自己做了几千张数据(实际只有几百张,利用数据扩充算法比如镜像,噪声,切割,旋转等扩充到了几千张,其实还是很不够).于是在网上找了相关的介绍,自己处理数据转化为VOC数据集的格式,在转化为XML格式等等.具体方法可以参见以下几个博客.具体是window还是Linux请自行对号入座. Linux:http://blog.sina.com.cn/s/blog_4a1853330102x7yd.html window:http://blog.csdn.n…