学习笔记64_k邻近算法】的更多相关文章

1 .假定已知数据的各个属性值,以及其类型,例如: 电影名称 打斗镜头 接吻镜头 电影类别 m1 3 104 爱情片 m2 2 100 爱情片 m3 1 81 爱情片 m4 2 90 爱情片 w1 101 10 动作片 w2 99 5 动作片 w3 98 2 动作片 上述数据称为训练数据. 如果有新的电影, k1 , 18 , 90 ,未知 电影名称 与未知电影的距离 m1 20.5 m2 18.7 m3 19.2 m4 21 w1 115.3 w2 117.4 w5 118.9 距离 : 通过…
提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布.所以我们觉得不论什么样本分布都能够用混合模型来建模.由于高斯函数具有一些非常有用的性质.所以高斯混合模型被广泛地使用. GMM与kmeans相似,也是属于clustering,不同的是.kmeans是把每一个样本点聚到当中一个cluster,而GMM是给出这些样本点到每一个cluster的概率.每一个component就是一个聚类中心. GMM(Gaussian Mi…
Sarsa算法 是 TD算法的一种,之前没有严谨推导过 TD 算法,这一篇就来从数学的角度推导一下 Sarsa 算法.注意,这部分属于 TD算法的延申. 7. Sarsa算法 7.1 推导 TD target 推导:Derive. 这一部分就是Sarsa 最重要的内核. 折扣回报:$U_t=R_t+\gamma R_{t+1}+\gamma^2 R_{t+2}+\gamma^3 R_{t+3}+\cdots \ \quad={R_t} + \gamma \cdot U_{t+1} $ 即 将\(…
k邻近算法的伪代码: 对未知类别属性的数据集中的每个点一次执行以下操作: (1)计算已知类别数据集中的点与当前点之间的距离: (2)按照距离递增次序排列 (3)选取与当前点距离最小的k个点 (4)确定前k个点所在类别的出现频率 (5)返回前k个点出现频率最好的类别作为当前点的预测分类 python函数实现 ''' Created on Sep 16, 2010 kNN: k Nearest Neighbors Input: inX: vector to compare to existing d…
前言 之前的学习中也有好几次尝试过学习该算法,但是都无功而返,不仅仅是因为该算法各大博主.大牛的描述都比较晦涩难懂,同时我自己学习过程中也心浮气躁,不能专心. 现如今决定一口气肝到底,这样我明天就可以正式开始攻克阿里云天池大赛赛题,所以今天一天必须把Adaboost算法拿下!!! Adaboost boosting与bagging boosting 个体学习器间存在强依赖关系.必须串行生成的序列化方法,提高那些在前一轮被弱分类器分错的样本的权值,减小那些在前一轮被弱分类器分对的样本的权值, 使误…
转载请标明出处:https://www.cnblogs.com/tiaozistudy/p/dbscan_algorithm.html DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法,是一种基于高密度连通区域的.基于密度的聚类算法,能够将具有足够高密度的区域划分为簇(Cluster),并在具有噪声的数据中发现任意形状的簇.DBSCAN算法通过距离定义出一个密度函数,计算出每个样本附近的密度,从而根据每…
k-近邻算法采用测量不同特征值之间的距离来进行分类. 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.空间复杂度高 使用数据范围:数值型和标称型 用例子来理解k-近邻算法 电影可以按照题材分类,每个题材又是如何定义的呢?那么假如两种类型的电影,动作片和爱情片.动作片有哪些公共的特征?那么爱情片又存在哪些明显的差别呢?我们发现动作片中打斗镜头的次数较多,而爱情片中接吻镜头相对更多.当然动作片中也有一些接吻镜头,爱情片中也会有一些打斗镜头.所以不能单纯通过是否存在打斗镜头或者接吻镜…
K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适合分类,也适合回归.KNN算法广泛应用在推荐系统.语义搜索.异常检测. KNN算法分类原理图: 图中绿色的圆点是归属在红色三角还是蓝色方块一类?如果K=5(离绿色圆点最近的5个邻居,虚线圈内),则有3个蓝色方块是绿色圆点的“最近邻居”,比例为3/5,因此绿色圆点应当划归到蓝色方块一类:如果K=3(离…
前言 今天不容易有一天的自由学习时间,当然要用来"学习".在此记录一下今天学到的最基础的平衡树. 定义 平衡树是二叉搜索树和堆合并构成的数据结构,它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树. 这里仅仅说明一下平衡树中的\(Splay\)算法 进入正题 平衡树中有许多种类:红黑树.\(AVL\)树,伸展树,\(Treap\)等等,但是\(Splay\)算法算是可用性很强的一种了.也就是说比较稳定. 在\(Splay\)算法中,一个处处都要…
「Meissel-Lehmer 算法」是一种能在亚线性时间复杂度内求出 \(1\sim n\) 内质数个数的一种算法. 在看素数相关论文时发现了这个算法,论文链接:Here. 算法的细节来自 OI wiki,转载仅作为学习使用. 目前先 mark 一下这个算法,等有空的时候再来研究一下,算法的时间复杂度为 \(\mathcal{O}(n^{\frac23})\) ,所以 \(n\) 的范围可以扩大至 \(10^{12}\) 的级别: 代码实现 #include <bits/stdc++.h>…