原文链接:https://blog.csdn.net/qq_39521554/article/details/79028012 什么是移动平均法? 移动平均法是用一组最近的实际数据值来预测未来一期或几期内公司产品的需求量.公司产能等的一种常用方法.移动平均法适用于即期预测.当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动,是非常有用的.移动平均法根据预测时使用的各元素的权重不同 移动平均法是一种简单平滑预测技术,它的基本思想是:根据时间序列资料.逐…
任何关于算法.编程.AI行业知识或博客内容的问题,可以随时扫码关注公众号「图灵的猫」,加入”学习小组“,沙雕博主在线答疑~此外,公众号内还有更多AI.算法.编程和大数据知识分享,以及免费的SSR节点和学习资料.其他平台(知乎/B站)也是同名「图灵的猫」,不要迷路哦~ ​ ​ 什么是移动平均法? 移动平均法是用一组最近的实际数据值来预测未来一期或几期内公司产品的需求量.公司产能等的一种常用方法.移动平均法适用于即期预测.当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消…
1. 用滑动平均估计局部均值 滑动平均(exponential moving average),或者叫做指数加权平均(exponentially weighted moving average),可以用来估计变量的局部均值,使得变量的更新与一段时间内的历史取值有关. 变量$v$在$t$时刻记为$v_t$,$\theta_t$为变量$v$在$t$时刻的取值,即在不使用滑动平均模型时$v_t = \theta_t$,在使用滑动平均模型后,$v_t$的更新公式如下: \begin{equation} …
转自:理解滑动平均(exponential moving average) 1. 用滑动平均估计局部均值 滑动平均(exponential moving average),或者叫做指数加权平均(exponentially weighted moving average),可以用来估计变量的局部均值,使得变量的更新与一段时间内的历史取值有关. 变量vv在tt时刻记为 vtvt,θtθt 为变量 vv 在 tt 时刻的取值,即在不使用滑动平均模型时 vt=θtvt=θt,在使用滑动平均模型后,vtv…
Given a stream of integers and a window size, calculate the moving average of all integers in the sliding window. For example, MovingAverage m = new MovingAverage(3); m.next(1) = 1 m.next(10) = (1 + 10) / 2 m.next(3) = (1 + 10 + 3) / 3 m.next(5) = (1…
本文链接:https://blog.csdn.net/m0_38106113/article/details/81542863 指数加权平均算法的原理 TensorFlow中的滑动平均模型使用的是滑动平均(Moving Average)算法,又称为指数加权移动平均算法(exponenentially weighted average),这也是ExponentialMovingAverage()函数的名称由来. 先来看一个简单的例子,这个例子来自吴恩达老师的DeepLearning课程,个人强烈推…
为了使训练模型在测试数据上有更好的效果,可以引入一种新的方法:滑动平均模型.通过维护一个影子变量,来代替最终训练参数,进行训练模型的验证. 在tensorflow中提供了ExponentialMovingAverage来实行滑动平均模型,模型会维护一个影子变量,其计算公式为: shadow_variable = decay * shadow_variable + (1 - decay) * variable 当训练模型时,维护训练参数的滑动平均值是有好处的.相比较最终训练值,验证时使用滑动平均值…
1.学习率的设置既不能太小,又不能太大,解决方法:使用指数衰减法 例如: 假设我们要最小化函数 y=x2y=x2, 选择初始点 x0=5x0=5  1. 学习率为1的时候,x在5和-5之间震荡. import tensorflow as tf TRAINING_STEPS = 10 LEARNING_RATE = 1 x = tf.Variable(tf.constant(5, dtype=tf.float32), name="x") y = tf.square(x) train_op…
Given a stream of integers and a window size, calculate the moving average of all integers in the sliding window. For example,MovingAverage m = new MovingAverage(3);m.next(1) = 1m.next(10) = (1 + 10) / 2m.next(3) = (1 + 10 + 3) / 3m.next(5) = (10 + 3…
原来国外有个源码(TechnicalAnalysisEngine src 1.25)内部对EMA的计算是: var copyInputValues = input.ToList(); for (int i = period; i < copyInputValues.Count; i++) { var resultValue = (copyInputValues[i] - returnValues.Last()) * multiplier + returnValues.Last(); return…