一 决策树 原理:分类决策树模型是一种描述对实例进行分类的树形结构.决策树由结点(node)和有向边(directed edge)组成.结点有两种类型:内部结点(internal node)和叶结点(leaf node).内部结点表示一个特征或属性,叶结点表示一个类.而最上面的结点就是决策树的根结点(root node). 决策树(decision tree)是一种基本的分类与回归方法,上图就是一个决策树. 长方形:decision block  判断模块 椭圆:terminating bloc…
咱们正式进入了机器学习的模型的部分,虽然现在最火的的机器学习方面的库是Tensorflow, 但是这里还是先简单介绍一下另一个数据处理方面很火的库叫做sklearn.其实咱们在前面已经介绍了一点点sklearn,主要是在categorical data encoding那一块.其实sklearn在数据建模方面也是非常666的.一般常用的模型都可以用sklearn来做的.既然它都这么牛逼了,咱们为啥还要学TensorFlow呢?其实主要的原因有两个,一是因为Google在流量方面的强势推广,导致绝…
数据挖掘-决策树 Decision tree 目录 数据挖掘-决策树 Decision tree 1. 决策树概述 1.1 决策树介绍 1.1.1 决策树定义 1.1.2 本质 1.1.3 决策树的组成 1.1.4 决策树的分类 1.1.5 决策过程 1.2 决策树的优化 1.2.1 过拟合 1.3.1 剪枝 2. 理论基础 2.1 香农理论 2.1.1 信息量 2.1.2 平均信息量/信息熵 2.1.3 条件熵 2.1.4 信息增益(Information gain) 2.1.5 信息增益率…
Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报  分类: Data Mining(25)  Python(24)  Machine Learning(46)  版权声明:本文为博主原创文章,未经博主允许不得转载. 本文基于python逐步实现Decision Tree(决策树),分为以下几个步骤: 加载数据集 熵的计算 根据最佳分割feature进行数据分割 根据最大信息增益选择最佳分割feat…
0. 算法概述 决策树(decision tree)是一种基本的分类与回归方法.决策树模型呈树形结构(二分类思想的算法模型往往都是树形结构) 0x1:决策树模型的不同角度理解 在分类问题中,表示基于特征对实例进行分类的过程,它可以被看作是if-then的规则集合:也可以被认为是定义在特征空间与类空间上的条件概率分布 1. if-then规则集合 决策树的属性结构其实对应着一个规则集合:由决策树的根节点到叶节点的每条路径构成的规则组成:路径上的内部特征对应着if条件,叶节点对应着then结论. 决…
前言 最近打算系统学习下机器学习的基础算法,避免眼高手低,决定把常用的机器学习基础算法都实现一遍以便加深印象.本文为这系列博客的第一篇,关于决策树(Decision Tree)的算法实现,文中我将对决策树种涉及到的 算法进行总结并附上自己相关的实现代码.所有算法代码以及用于相应模型的训练的数据都会放到GitHub上(https://github.com/PytLab/MLBox). 本文中我将一步步通过MLiA的隐形眼镜处方数集构建决策树并使用Graphviz将决策树可视化. 决策树学习 决策树…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面三篇写了线性回归,lasso,和LARS的一些内容,这篇写一下决策树这个经典的分类算法,后面再提一提随机森林.关于决策树的内容主要来自于网络上几个技术博客,本文中借用的地方我都会写清楚出处,写这篇[整理文章]的目的是对决策树的概念原理.计算方法进行梳理.本文主要参考文献的[1][2]的图片和例子.另外,[3]写的也比较仔细,…
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 医药统计项目可联系  QQ:231469242     决策树优点和缺点 决策树优点 1.简单易懂,很好解读,可视化 2.可以变量筛选 缺点 1.决策树…
决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分,将其归到不同的类别.决策树的主要优点是模型可读.易于理解.分类速度快.建模与预测速度快.本文主要介绍 Quinlan 在 1986 年提出的 ID3 算法与 1993 年提出的 C4.5 算法.下面首先对决策树模型进行简单介绍. 决策树模型 决策树是由树节点与边组成的,其节点有两种类型,内部节点和叶…
https://www.cnblogs.com/leoo2sk/archive/2010/09/19/decision-tree.html 3.1.摘要 在前面两篇文章中,分别介绍和讨论了朴素贝叶斯分类与贝叶斯网络两种分类算法.这两种算法都以贝叶斯定理为基础,可以对分类及决策问题进行概率推断.在这一篇文章中,将讨论另一种被广泛使用的分类算法——决策树(decision tree).相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置,因此在实际应用中,对于探测式的知识发现,决策树…